snoRNA Target Interaction and Prediction
part of “interactions of RNAs and proteins”

Sonja Prohaska

Computational EvoDevo
University Leipzig

May 19, 2017
Structure of box H/ACA snoRNAs

Function: guide pseudouridination of uridine by dyskerin

- has two sequence motifs:
 - H box: 5’-ANANNA-3’, ACA box: 5’-ACA-3’
- target RNA binds to an internal loop of the snoRNA
- only few mismatches and symmetric internal loops of length 2 or 4
- target position for pseudouridylation between the two duplexes
- enzyme: DKC1 = Dyskerin, pseudouridine synthase
- makes complex with: GAR1, NHP2, NOP10, DKC1
Classes of snoRNAs

names of proteins are taken from yeast
Prediction of H/ACA box snoRNA targets

RNAsnoop

- two stem-loop structures
- dynamic programming, thermodynamic folding
- calculate (unbranched) hairpin loop (H)
- calculate left duplex between snoRNA and target RNA (L)
- calculate right duplex between snoRNA and target RNA (R)
- machine learning trained on set of functional snoRNAs

Constraints:

- take T as given
- duplexes allow only single and tandem mismatches
- target position (i-2) of U to be modified follows left duplex
Prediction of H/ACA box snoRNA targets

- use pattern search and RNA folding to find the 'ACA' and 'ANNANA' motifs and the two stem-loop components
- compute interaction structure separately for the two structures
- calculate left side L, calculate unbranched fold M then calculate right side R
consider the *intra*-molecular interaction of subsequence $y[p, q]$ (same as $(y_p...y_q)$) of the snoRNA sequence y

build the best stem-loop structure $M_{p,q}$ from

- a hairpin loop H
- and interior loops (incl. stacked basepairs) I
- if $k = 1$ and $l = 1$ the “interior loop” is a stacked basepair
- if $k > 1$ or $l > 1$ it is an interior loop
RNAsnoop: unbranched fold M

$$M_{p,q} = \min \left\{ \mathcal{H}(y[p, q]) \right.$$ \hspace{1cm} \left. \min_{k,l} M_{p-k, q+l} + \mathcal{I}(y[p - k, p], y[q, q + l]) \right\}$$

- either start with the hairpin loop \mathcal{H}
- or extend the stem with an interior loop \mathcal{I}
look at basepair y_i, x_j

- x is the target RNA, y is the snoRNA
- index i runs along the target RNA x (from 5’ to 3’)
- index j runs along the target RNA y (from 5’ to 3’)
- only symmetric interior loops of length 2 or 4 are allowed in L
- to $L_{i-k, j+k}$ we add the an interior loop \mathcal{I}
RNAsnoop: Left side

- **stacked base pairs**
 - \(k=1\)
 - \(j\) \(i\) \(j+k\) \(i-k\)
 - \(y\) \(x\)

- **interior loop**
 - **length 2**
 - \(k=2\)
 - \(j\) \(i\)
 - \(j+k\) \(i-k\)
 - **length 4**
 - \(k=3\)
 - \(j\) \(i\)
 - \(j+k\) \(i-k\)

- **k \(!=l\)**
 - \(j\) \(i\)
 - \(j+k\) \(i-l\)

\[L_{i,j} = \min_{k=1,2,3} L_{i-k,j+k} + I(x[i-k,i], y[j,j+k]) \] \(\text{(2)}\)
RNAsnooP: Right side

- Look at closing basepair y_i, x_j
- We combine the left side L, the stem-loop M and the pseudouridine-loop
- The pseudouridinylation site at $i - 2$ and a nucleotide at $i - 1$ need to be unpaired (Ψ-N)
- x_{i-3} has to contribute a basepair to L
- x_i has to contribute a basepair to R
\[R_{i,j} = \min \begin{cases} \min_{k,l \leq 2} R_{i-k,j+l} + \mathcal{I}(x[i-k,i], y[j,j+l]) \\ \min_{l \in [3, |y| - j]} L_{i-3,j+l+1} + M_{j+1,j+l} \\ \text{if } x_{i-2} = 'U' \end{cases} \quad (3) \]

- the second term starts the right duplex by adding the left side \(L \) and the stem-loop \(M \)
- the first term continues the right side with an interior loop (or stacked pair) that has the same constraints on loop sizes as the left side
- notice the constraints on the positioning of \(\Psi \) at \(x_{i-2} \)
How to validate the target prediction

▶ rank predicted targets according to their MFE
▶ see if two or more H/ACA structures are adjacent
▶ check overlap with existing annotation
▶ varify predictions in the lab with a functional test

Outlook
Use a reverse strategy to design a snoRNA that converts a specific U in a target RNA into a pseudouridine.

Williams GT and Farzaneh F. (2012) *Are snoRNAs and snoRNA host genes new players in cancer?* Nature reviews 12,84-88