snoRNA-target interactions
part of “interactions of RNAs and proteins”

Sonja Prohaska

Computational EvoDevo
University Leipzig

June 2, 2014
Structure of box H/ACA snoRNAs

Function: guide pseudouridination of uridine by dyskerin

- has two sequence motifs:
 - H box: 5’-ANANNA-3’, ACA box: 5’-ACA-3’
 - target RNA binds to an internal loop of the snoRNA
 - only few mismatches and symmetric internal loops of length 2 or 4
 - target position for pseudouridylation between the two duplexes
 - enzyme: DKC1 = Dyskerin, pseudouridine synthase
 - makes complex with: GAR1, NHP2, NOP10, DKC1
Classes of snoRNAs

names of proteins are taken from yeast
Prediction of H/ACA box snoRNA targets

RNAsnoop

- two stem-loop structures
- dynamic programming, thermodynamic folding
- calculate (unbranched) hairpin loop (H)
- calculate left duplex between snoRNA and target RNA (L)
- calculate right duplex between snoRNA and target RNA (R)
- machine learning trained on set of functional snoRNAs

constraints:

- take T as given
- duplexes allow only single and tandem mismatches
- target position (i-2) of U to be modified follows left duplex
Prediction of H/ACA box snoRNA targets

- use pattern search and RNA folding to find the 'ACA' and 'ANNANA' motifs and the two stem-loop components
- compute interaction structure separately for the two structures
- calculate left side L, calculate unbranched fold M then calculate right side R
RNAsnoop: unbranched fold M

- consider the *intra*-molecular interaction of subsequence $y[p, q]$ (same as $(y_p...y_q)$) of the snoRNA sequence y
- build the best stem-loop structure $M_{p,q}$ from
 - a hairpin loop \mathcal{H}
 - and interior loops (incl. stacked basepairs) \mathcal{I}
 - if $k = 1$ and $l = 1$ the “interior loop” is a stacked basepair
 - if $k > 1$ or $l > 1$ it is an interior loop
RNAsnoop: unbranched fold M

\[
M_{p,q} = \min \begin{cases}
\mathcal{H}(y[p, q]) \\
\min_{k,l} M_{p-k, q+l} + \mathcal{I}(y[p-k, p], y[q, q+l])
\end{cases}
\]

- either start with the hairpin loop \mathcal{H}
- or extend the stem with an interior loop \mathcal{I}
RNAsnoop: Left side L

- Look at basepair y_i, x_j
- x is the target RNA, y is the snoRNA
- Index i runs along the target RNA x (from 5' to 3')
- Index j runs along the target RNA y (from 5' to 3')
- Only symmetric interior loops of length 2 or 4 are allowed in L
- To $L_{i-k,j+k}$ we add the an interior loop I

$k \neq l$
RNAsnoop: Left side

\[
L_{i,j} = \min_{k=1,2,3} L_{i-k,j+k} + \mathcal{I}(x[i-k,i], y[j,j+k])
\]

(2)
looking at closing basepair y_i, x_j
we combine the left side L, the stem-loop M and the pseudouridine-loop
the pseudouridinylation site at $i - 2$ and a nucleotide at $i - 1$ need to be unpaired (Ψ-N)
x_{i-3} has to contribute a basepair to L
x$_i$ has to contribute a basepair to R
RNAsnoop: Right side

\[R_{i,j} = \min \begin{cases}
\min_{k,l \leq 2} R_{i-k,j+l} + I(x[i-k,i], y[j,j+l]) \\
\min_{l \in [3, |y|-j]} L_{i-3,j+l+1} + M_{j+1,j+l}
\end{cases} \]

(3)

- the second term starts the right duplex by adding the left side \(L \) and the stem-loop \(M \)
- the first term continues the right side with an interior loop (or stacked pair) that has the same constraints on loop sizes as the left side
- notice the constraints on the positioning of \(\Psi \) at \(x_{i-2} \)
Tafer H, Kehr S, Hertel J, Hofacker IL and Stadler PF. (2010)
RNAsnoop: efficient target prediction for H/ACA snoRNAs.
Bioinformatics 26(5), 610-616

Williams GT and Farzaneh F. (2012) *Are snoRNAs and snoRNA host genes new players in cancer?* Nature reviews 12, 84-88