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Abstract

The Human Accelerated Region 1, HAR1, is the most rapidly evolving region in the human genome. It is part of
two overlapping long non-coding RNAs, has a length of only 118 nucleotides and features 18 human specific changes
compared to an ancestral sequence that is extremely well conserved across non-human primates. The human HAR1
forms a stable secondary structure that is strikingly different from the one in chimpanzee as well as other closely related
species, again emphasizing its human-specific evolutionary history. This suggests that positive selection has acted to
stabilize human-specific features in the ensemble of HAR1 secondary structures. To investigate the evolutionary history
of the human HAR1 structure, we developed a computational model that evaluates the relative likelihood of evolutionary
trajectories as a probabilistic version of a Hamiltonian path problem. The model predicts that the most likely last step in
turning the ancestral primate HAR1 into the human HAR1 was exactly the substitution that distinguishes the modern
human HAR1 sequence from that of Denisovan, an archaic human, providing independent support for our model. The
MutationOrder software is available for download and can be applied to other instances of RNA structure evolution.

Keywords: Human evolution, computational modeling, dynamic programming, non-coding RNA, secondary structure,
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1. Introduction

Functional innovations at the phenotypic level are even-
tually the result of genetic changes. While most muta-
tions are (nearly) neutral or even detrimental, occasion-
ally they lead to innovations by affecting the expression5

pattern of genes or the sequence of the gene product itself.
In the latter case, novel molecular and biological functions
are thought to be the result of changes in the molecule’s
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structure that in turn changes its interactions and thus its
position within cellular networks. As a consequence, the10

mutant becomes subject to new selection pressures that
may lead to rapid adaptive evolution [1]. Such scenarios
are extremely difficult to model computationally, because
it requires explicit models of structure formation, all rele-
vant interactions in the network, and the functions of the15

network. In the special case of functional RNAs it is at
least possible, however, to model the adaptation towards a
target structure [2, 3]. In this contribution we ask to what
extent the detailed history of recent adaptive evolution can
be reconstructed from the knowledge of the current and20

ancestral structures of a rapidly evolving RNA element.
There are some regions on the genome that have ac-

cumulated many human specific changes while remaining
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constant in other closely related species. These are called
human accelerated regions and are candidates for gener-25

ating human specific traits [4]. The Human Accelerated
Region 1 (HAR1) is the region with the most human spe-
cific changes in the primary sequence. It will serve here as
our paradigmatic example. HAR1 is only 118 nucleotides
long and contains 18 human specific substitutions, which30

corresponds to a rate of 0.025 substitutions per site per
million years. This substitution rate is in humans two
orders of magnitude larger compared to other amniotes,
for which we expect only 0.27 rather than 18 substitu-
tions in total [4]. HAR1 is located in a pair of overlap-35

ping long non-coding RNAs, HAR1F and HAR1R, both
of which are very specifically expressed in Cajal-Retzius
cells between the 7th and 19th gestational weeks. This
is a crucial period for cortical neuron specification and
migration. HAR1F and HAR1R were also reported to be40

co-expressed with reelin (RELN), a protein involved in the
organisation of the laminar cortex of the brain [4]. HAR1R
and HAR1F are direct targets of the RE1-silencing tran-
scription factor (REST) in human but not in mouse [5],
indicating a change in their regulatory interactions. Con-45

sidering the highly specific expression pattern of HAR1 in
Cajal-Retzius cells, HAR1F and HAR1R may have an im-
portant role in the correct organization of the developing
human brain.

The secondary structure of HAR1 is conserved among50

vertebrates with the exception of humans. In humans,
HAR1 forms a stable cloverleaf-like structure, that differs
from the one of the other species, which was first supported
by dimethyl-sulphate (DMS) treatment structure probing
[4]. The predicted divergence of the human structure was55

afterwards confirmed by two independent empirical meth-
ods. Chemical and enzymatic probing [6] resulted in a
hairpin-like structure for the chimpanzee sequence and a
cloverleaf-like structure for the human, although the au-
thors mentioned that the chimpanzee structure might also60

be able to form a hairpin structure. NMR spectroscopy
confirmed the chimpanzee model but implied that the hu-
man structure contains two small hairpin domains con-
nected by a flexible middle region [7].

Since HAR1 has been largely conserved among am-65

niotes except in humans [4], we considered the chimpanzee
version of HAR1 as the most likely ancestral version be-
fore humans and chimpanzees split from each other. Sur-
prisingly, all 18 human specific substitutions replace an
ancestral A or T with a G or C. In general G-C interactions70

are energetically more favorable than A-T, so that the sub-
stitutions are expected to lead to an overall stabilization
of the RNA structure, which is in apparent contradiction
with the empirically observed weakening of the ancestral
hairpin structure in favor of a much more flexible human75

structure. A closer inspection, however, shows that the
ancestral hairpin structure is only marginally stable and
the human-specific substitutions have lead to a strategic
stabilization of two of the three hairpins of the predicted
cloverleaf structures (Fig. 1 (a,c)). This is clear when com-80
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Figure 1: Ancestral and human HAR1 structures as start and end
points of an evolutionary simulation. Ancestral (a) minimum free
energy (MFE) and (b) centroid structures, as the start point in our
model, and human (c) minimum free energy and (d) centroid as the
end point in our model. Nucleotides are colored according to their
pairing frequency in the ensemble. Base pairs in shades of red occur
in ≥ 90% of all structures in the ensemble, while green to yellow de-
note increasing probabilities ≥ 50%. For unpaired nucleotides, colors
toward red denote increasing unpairedness. The centroid structures
contain base pairings that occur in more than 50% of the structures
of each ensemble.

paring the minimum free energy (MFE) structures of the
ancestral and human versions, and especially when com-
paring the centroid structures (Fig. 1 (b,d)). While MFE
structures are the most stable in the ensemble and require
more energy to be broken, they are not the only ones occur-85

ing in the cell. The centroid structure can be interpreted
as the most informative representative of the Boltzmann
ensemble of possible structures, since it has the smallest
average base pair distance to all alternatives. The ances-
tral centroid is much less stable than the human centroid,90

that is, the whole ensemble for human is structurally closer
to its MFE and shows much less structural diversity.

To understand how the human specific structure of
HAR1 evolved, we developed a computational model. We
revealed a strong reshaping of the HAR1 structure and95

the most likely last change of the 18 substitutions. In-
terestingly, all of the substitutions seem to drive HAR1
to a more stable ensemble. Moreover, the last predicted
mutation separates the structures of the modern human
from the archaic Denisovan hominin and recreates a stem100
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that had been weakened on the evolutionary path from the
ancestral sequence to Denisovan.

2. The Model

Our aim is to investigate the evolutionary history of a
ncRNA that evolved from the ancestral structure to the105

extant structure, by reconstructing the statistically most
likely order of substitutions. In this work we focused on
HAR1, but the model provides a general framework that
allows for statistical inference on the temporal ordering of
a set of mutations between any two RNA sequences. Al-110

though the actual ancestral sequence is not known, it can
be inferred with high confidence in cases such as HAR1,
in which the sequence is conserved in the primate lineage,
with the only exception in species of the genus Homo. Re-
constructing the history of an RNA sequence, the human115

HAR1 in our case, can be phrased as an instance of a
combinatorial optimization problem that is equivalent to
the Hamiltonian path (HSP) problem [8]. It asks for a
path on a graph in which each node is visited exactly once
(similar to the travelling Salesman problem). In our set-120

ting, the substitutions under consideration are represented
as the nodes of a complete graph, and each Hamiltonian
path specifies one of the possible orders in which the sub-
stitutions may have occurred. The problem we face here
differs from the usual HSP in the definition of a cost func-125

tion, which depends on the entire history, i.e., on the nodes
that have already been visited. Formally, the solution to
such a problem falls into the class of histomorphisms [9].
In the following paragraph we describe the model and its
assumptions in detail.130

2.1. Mutation Ordering

Given an ancestral sequence x, a secondary structure
S(x) and a corresponding derived extant pair y and S(y),
we implicitly know the set X of fixed substitutions from
the alignment of sequences x and y. What we are inter-
ested in is their temporal ordering. Each possible evo-
lutionary path is therefore a permutation π of X. The
structure S(y) of the extant sequence y serves as a proxy
for the selection target. This allows us to use a mea-
sure of structural distance to S(y) as a proxy for fitness,
i.e., substitutions that reduce the distance to S(y) can be
thought as adaptive and are quickly fixed, while substitu-
tions that increase the distance to S(y) are discouraged.
Thus f(u) = −d(S(u), S(y)) serves as a fitness function.
The fitness cost of an evolutionary path π is then

f(π) =

|X|∑
i=2

(
d(S(πi), S(y))− d(S(πi−1), S(y))

)
+

(1)

in which the sum only includes those steps in which the fit-
ness decreases, that is the distance to the target increases.
The likelihood of a path π decreases exponentially with its
fitness cost, i.e.,

Prob[π] = e−βf(π)/Z (2)

in which the “inverse temperature” β is a scaling parame-
ter measuring the stringency of selection, and Z is a nor-
malization factor.

There is some freedom in modelling the distance. In135

this contribution, we use the energies of centroid and MFE
structures as well as the base pair distances between MFE
and centroid structures. Conceivable other choices include
variance or Kullback-Leibler distances measured for the
base pairing probabilities, as used e.g. in RNAsnp [10].140

Finding the most likely permutation, i.e., the one that
minimizes f(π) amounts to computing the Hamiltonian
path from x to y with minimal total cost. This problem
can be solved by a well-known exponential time dynamic
programming algorithm [8, 11, 12], which is applicable in145

practice for a problem size of n = 18 fixed substitutions,
as in the case of HAR1. As shown in [12], the use of ideas
from algebraic dynamic programming makes it possible to
also compute the posterior probabilities Pij for two fixed
mutations i and j to be consecutive along a path. Using150

this matrix of posterior probabilities as the scoring func-
tion, the same recursive algorithm can be used to compute
the Maximum Expected Accuracy (MEA) path.

The model also makes it simple to compute the proba-
bilities πij that the sequence of fixed substitutions started155

with position i and terminated with position j. These
quantities give access to the probability that πj =

∑
i πij

of fixed substitution j being the last one.

2.2. Intermediate and Backmutations

Landscapes of an RNA structure tend to be rough, ad-160

mitting drastic changes in response to a single substitu-
tion, and at the same time contain vast neutral plateaus
[13, 2, 14]. Any exploration of the landscape based on
a subsampling approach may easily not explore regions
of high density or other properties of interest. Exhaus-165

tive algorithms therefore are preferrable, since they are
guaranteed to model the landscape accurately. It is neces-
sary, on the other hand, to restrict the landscape model in
such a way that (i) the desired properties are still retained,
and (ii) excluded extensions of the model or landscape are170

not likely to contain the most interesting regions. In the
above algorithm, we excluded all unobserved substitutions
(which also includes substitutions that might have been
fixed in the population only for a short period of time).
Thus, in the case of HAR1, only permutations of the 18175

differences between human and the ancestral sequence are
considered, instead of the unmanageable set of all possible
paths that would also include backmutations.

This simplification makes our model computationally
feasible, neglecting additional mutations, that might have180

been fixed only temporarily. However, in order to provide
a more detailed view into these substitutions that were in-
troduced and later reverted again, we also describe here
a corresponding extension of the above algorithm. More
precisely, we consider two cases: (i) A nucleotide that coin-185

cides in the ancestral and the extant state was replaced by
one of the three alternatives somewhere along the path and
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later reverted back to its initial state (“back-mutation”).
(ii) A nucleotide that has changed between ancestral and
extant state has also changed to a different state from190

both the ancestral and the extant state and only later was
substituted by the extant nucleotide (“intermediate muta-
tion”). Within the framework of our model, we write the
fitness cost of a path with a single “back-mutation” as

f(π, b+, b−) =

b+−1∑
i=2

(
d(S(πi), S(y))− d(S(πi−1), S(y))

)
+

+ d(S(πBb+), S(y))− d(S(πb+−1), S(y))
)

+

+

b−−1∑
i=b+

(
d(S(πBi ), S(y))− d(S(πBi−1), S(y))

)
+

+ d(S(πb−), S(y))− d(S(πBb−−1), S(y))
)

+

+

|X|∑
i=b−

(
d(S(πi), S(y))− d(S(πi−1), S(y))

)
+

(3)

The backmutation occurs after b+ steps in the permu-195

tation order have already been taken and is undone after
b− steps have been taken. The permutation π now in-
cludes the observed mutations as well as the steps b+ and
b−. The RNA landscape changes with the introduction of
the backmutation, which requires a temporary change into200

this new landscape, indicated by πB . The additional terms
are the incurred costs due to the switch. This new variant
of the algorithm requires the solution of three Hamiltonian
path problems, which are connected by edges denoted by
a change of landscape due to the backmutation. The cost205

associated with the “intermediate mutation” case can be
written in an analogous form.

These variants introduce a substantial additional cost
in computation time. For sequences of length n with k
mutations, there are n−k backmutations with three possi-210

ble nucleotide configurations each. The intermediate mu-
tations introduce another 2k configurations. Given that
k � n, the approximate increases in the running time and
the number of sequences in the landscapes is ≈ 3n. For
HAR1 with n = 118 and k = 18, this amounts to a 336-215

fold increase in running time, as there are 300 backmu-
tation configurations and 36 intermediate mutation con-
figurations. Thus, instead of originally 218 = 262 144 se-
quences in the RNA landscape, the algorithm now has to
handle 83 623 936 sequences: the original 218 sequences220

plus the three nucleotide alternatives for the 100 positions
subjected to backmutations plus the two nucleotide alter-
natives for the 18 positions subjected to intermediate mu-
tations, amounting to 218+3×100×218+2×18×218−1. The
most cost-intensive contribution to the total running time225

is the evaluation of the RNA folding energy. Further exten-
sions to include more than one “intermediate” or “back-
mutation” are conceptually simple, but are not feasible

in practice because the computational effort grows by an-
other factor of O(n) for each additional detour. Neverthe-230

less, we can use the extended algorithm to check whether
particular “intermediate” or “back-mutations” might have
a dominant impact.

We note that both, the evaluation of the RNA folding
energies for each member of the RNA landscape, and each235

individual calculation of the mutation order, are in fact
parallel in nature. As a consequence, provided sufficient
computational resources, a somewhat deeper exploration
is possible.

2.3. Marginalization for Extended Models240

The cost associated with a permutation order π, Eq. 3,
includes both the introduction of the backmutation b+
and its eventual reversal b−. The fully specified model
M(π, b+, b−, p, u) = fp,u(π, b+, b−) yields the cost for a
particular mutation order π, with a backmutation into and245

out of nucleotide u at position p in the RNA landscape;
b+, b− specify where the backmutation and its reversal oc-
cur along the sequence substitutions. We are most inter-
ested, however, not in the full details but rather in a more
informative comparison of the models with and without250

a backmutation. To this end, the marginal likelihood is
computed in Eq. 4

∫
π,b+,b−

M(π, b+, b−, p, u)dπb+b− =: M ′(p, u) (4)

for each pair (p, u). This yields the evidence for a model
that introduces a backmutation at p of nucleotide u, but
integrates out the exact order of mutations.255

A more complex model will, in general, allow for a
higher total evidence. This impact can be explicitly calcu-
lated for a penalty function of the type f = g(·)+ in which
only the positive part of g is taken into account. In such a
case we have inf f = 0 and given a permutation of {1 . . . n}260

any permutation for which f = 0 holds provides a partial
evidence of

∏n
1 e
−0 = 1. The marginal likelihood for the

original model (without backmutations) is then bounded
by

∑
π∈Π

|π|∏
1

e−0 = n! (5)

or in the log-domain lnn!, the maximal log-evidence in265

“nats” (units of information in the natural logarithm) for
the model. The original model therefore yields at most
≈ 36.40 nats, while a model incorporating backmutations
could provide ≈ 42.34 nats, a difference of about 6 nats
due to the fact that the original model only deals with 18!270

permutations while the backmutation model deals with 20!
permutations. This means that while each model incorpo-
rating a backmutation can be compared directly with any
other, direct comparisons between different types of mod-
els (original, intermediate mutation, backmutation) need275
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to be handled more carefully and we leave the choice of
the penalty value open

(see Sec. 4.3).

3. Material and Methods

HAR1 has been extremely conserved in vertebrates.280

There is only one base that does not concur among non-
human primates [4]. For this reason, we used the chim-
panzee sequence as an approximation to the ancestral se-
quence. The HAR1 sequences were retrieved from the
NCBI nucleotide database, including human, chimpanzee,285

and the archaic Denisovan. Independently of the causes of
fixation, we restrict ourselves to the 18 fixed substitutions
separating the human and ancestral sequences, and con-
sider backmutations via a variant of our algorithm at the
end of Section 4 section only. Since we assume that this290

rapid evolution was largely adaptive, back-mutations can
be disregarded for now. We consider all subsets of the 18
observed fixed substitutions as potential intermediates.

Both minimum energy secondary structures and base
pairing probabilities were computed using the ViennaRNA295

package [15] (Version 2.3.3) with the standard Turner en-
ergy model [16] for RNA secondary structures (dangling
model -d2, and no lonely base pairs (--noLP)). These
predictions were used to determine the structural and en-
ergetic differences between potentially consecutive muta-300

tions.

3.1. Visualisation of RNA Secondary Structures

Since the comparison of the Boltzmann ensemble of two
structures is more informative and yields more detailed in-
sights than the comparison of MFE or centroid structures305

alone, we used superpositions of base pairing probability
dot-plots with different colors for each species. While the
combined dot-plots are useful to obtain a quick overview,
they can be difficult to interpret.

The CS2-UPlot [17] provides an alternative visualiza-310

tion representing the two main information components of
an RNA secondary structure in two concentric graphical
layers: the RNA sequence and the MFE and alternative
base pairing possibilities. It uses Circos version 0.69-3
[18] and Perl version 5.022001 and combines base pairings315

with dot-plot values in a single graphical representation. It
has the advantages of better highlighting similarities and
differences than dot-plots and providing with the circular
diagrams a graphical representation that is more intuitive
to biologists.320

3.2. Diversity of HAR1 in human populations

To further investigate variability of the HAR1 region
in human populations, we retrieved all reported SNPs in
the 118 base pair HAR1 region using the ENSEMBL Data

Slicer from the data set provided by the 1000 Genomes325

project [19]. We also checked the human genome for possi-
ble structural paralogs of the HAR1 region using Infernal
[20], with no such paralogs being identified.

4. Results

4.1. Comparison Between Ancestral, Archaic and Modern330

Human Structures

Centroid structures typically yield a better impression
of the consensus of the equilibrium ensemble of secondary
structures than the MFE structure. The centroid of the
ancestral structure has a much more flexible space for335

base pairing (Fig. 1), and can form both a hairpin and
a cloverleaf structure, which has been reported before [6].
In contrast, the human sequence has a more constrained
set of energetically lower free energy structures, and hence
exhibits a better defined, more stable cloverleaf-shaped340

structure (Fig. 1). This is consistent with the expecta-
tion of the increased GC content of the human sequence.
We conclude that stabilization of the cloverleaf structure
is a plausible model for how selection acted at the level of
RNA structure.345

The Denisovan HAR1 differs from its modern human
counterpart only by a T instead of a C in position 47. The
archaic human structure shares small stems with modern
humans, which are only slightly shifted. However, the
structural space of the Denisovan structure is still more di-350

verse, featuring more base pairs that are less well-defined
than in modern human, thus appearing more similar to
the ancestral state (see Fig. 2). A corresponding dot-plot
representation is shown in the Appendix.

In addition to uncovering the evolutionary path from355

the ancestral to the human version of HAR1, we also asked
whether there are variants of HAR1 among modern hu-
mans. The 1000 Genomes Project [19] reports only three
SNPs for HAR1: C47T, C52T and G113C, each occurring
in less than 1% of the surveyed populations. The variant360

C47T (a change from Cytosine to Thymine at HAR1 po-
sition 47) is only present in South and East Asian popula-
tions and was not detected in African, American or Euro-
pean populations. Note that this is the exact same variant
found in Denisovan. This is interesting, since Denisovans365

lived in the area ranging from Siberia to South East Asia
and have inbred with modern humans who lived in the
same area [21]. It may be a Denisovan HAR1 variant, still
present in our species today and thus provide independent
support for our suggestion that position 47 was one of the370

very last steps in the evolutionary reshaping of the HAR1
structure. It could however also be a case of parallel evolu-
tion that brought the ancestral variant back into modern
humans.

While the variant C47T is shared with Denisovans, the375

other two variants seem to be novel, i.e. specific to mod-
ern humans. The variant C52T is exclusive to American
and African populations, while the variant G113C is ex-
clusive to Asian populations. These two variants seem to
be novel, since they are not present in the ancestral nor in380

Denisovan. Position 52 is invariant in all amniotes, while
position 113 has changed from an A in the ancestral to a
G in Denisovan and modern humans. All three observed
variants decrease the stability of the very stable wildtype

5



Ancestral Denisovan Human

Figure 2: Comparison of the ancestral (left), Denisovan (middle) and modern human (right) ensembles of HAR1 secondary structures. The
plots contain the sequence on the outer layer, the MFE base pairings in red lines and alternative base pairing possibilities in orange and blue,
with orange base pairings being more likely than the blue ones. Mutations in relation to the modern human sequence are indicated in red
dots. See Fig. 9 for a larger version.

human HAR1 ensemble. The variant at position 52 has the385

strongest impact, which can be seen especially in the cen-
troid structure (Fig. 6). The MFE of variant 52 however
still folds into a cloverleaf format (Fig. 6). The variant
at position 47 destabilizes a small hairpin in the human
centroid structure back to the Denisovan state. Despite390

these effects on the structure, no associations to diseases
were reported for any of these three variants in the Dis-
GeNET database [22]. Apart from the structural impact,
any functional consequence caused by the variations could
only be assessed by further experiments, which is out of395

scope for this project.

4.2. Reconstructing the Evolution of HAR1

We found qualitatively comparable features of the most
likely pathways, even when using different models for the
structural distances underlying the fitness model for evo-400

lutionary paths. Table 1 gives the number of solutions
that all share the same equally optimal weight when all
stability-gaining fixed mutations are assumed equally likely
and mutations that decrease the stability of the structure
are scored according to different criteria. We count the405

number of co-optimal paths for four different fitness mod-
els. The MFE and centroid models use the energy gain or
loss between two structures and are essentially max(0,∆E)
while the pairdist models naturally model only losses. The
basepair distance between the two structures is at least410

0 and as high as the number of base pairs in the two
structures. In all variants of the model there are large
numbers of co-optimal permutations, suggesting that evo-
lutionary paths along with monotonically increasing fit-
ness were easy to find. It is particularly easy to find a415

large number of co-optimal paths using the MFE energy
as fitness function, in which all mutational steps increase
the fitness. Not surprisingly we find that there are more
paths that stabilize the minimum free energy structure
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Figure 3: Probability πj for each mutation to be the last mutational
event with β = 1.0. Nucleotide position 47 is the Denisovan-human
mutation and has the highest posterior probability. Position 54 has
≥ 50% posterior probability to pair with Position 47. The base pairs
44-57 and 33-66 are part of the same hairpin in human with ≥ 50%
probability.

than paths that keep the centroid stable – and thereby420

stabilize a majority of the ensemble of structures.
We observed a large degree of redundancy, with many

equivalent evolutionary trajectories, which leaves only small
differences in the probabilities for the last mutations in the
sequence.425

Nevertheless, it is still interesting to note that the T

to C transition in position 47, which separates Denisovan
from modern human, is predicted as the most likely last
step from our model (Fig. 3). Importantly, as the model
only has information of the ancestral and the final states,430

but does not have information on the Denisovan state as a
likely intermediate, we can interpret this result as a direct
support for our modelling approach.

The large number of feasible paths makes it impossible
to analyze them individually. Instead, we provide further435

summary statistics in the form of edge probability plots.
These plots identify likely neighbours in the chronological
ordering of the mutational events. Fig. 4 summarizes these
probabilities for the pair distance fitness model based on

6



centroid structures. In particular, the base pair 54 → 47440

is recognized to have high probability in this chronological
order. The A to G substitution at position 54 furthermore
sets the stage for the C/T polymorphism, which, despite
de-stabilizing the structure, maintains a similar ensemble
of structures. Note that in ancestral as well as in Deniso-445

van, position 54 was unpaired, while 47 paired with 52. In
human, position 47 forms a pair with 54, while position
52 is now unpaired (Fig. 2). Interestingly, this rearrange-
ment stabilizes the whole inner stem, which can be clearly
seen in the centroid structures (Fig. 6(a) and (b)). We can450

conclude from the results that the last event in the evo-
lution of the human structure stabilized the whole lower
stem.

Summarizing the likely sequence of events as recon-
structed by our approach, we arrive at the following plau-455

sible scenario. If the last stabilizing event occured in the
lower stem, and the most downstream stem was already
present in the ancestral structure, it is reasonable to con-
clude that the first big event that was fixed in the evolution
of the human HAR1 formed the most upstream stem. This460

could have occured in one step with position 16A → G,
which can already form a weak GU pair with position 26
(Fig. 2). With the surrounding bases also being able to
form AU pairs (14 and 28, 15 and 27, 17 and 25, 18 and
24), a change in this position could have formed the third465

stem.

4.3. Impact of Back- and Intermediate Mutations

In this section we investigate the (numerical) impact
of including intermediate or backmutations in the model.
In the following text, we focus on the variant including470

a single backmutation. The results hold analogously for
an intermediate mutation. The histograms with the re-
spective impact are given for both, back- and intermediate
mutations (Fig. 5 and Fig. 8).

Fig. 5 shows the per-site and per-nucleotide impact of475

both, back- and intermediate mutations using the basepair
difference model. For correct interpretation of the figure
(and Fig. 8), note that the difference in model complexity
as described in Sec. 2.3 gives different ln-evidence values
for the original and extended models.480

Table 1: Frequency of co-optimal permutations of the 18 human-
specific fixed substitutions in HAR1 for different choices of the dis-
tance function in Eq. (1). The first two distance functions penalize
increases in the folding energy computed for the minimum energy
and centroid structures, resp. The number of base pairs that differ
between the structure at each step and the human target is used as an
alternative model. The third column gives the fraction of co-optimal
paths among the 18 permutations.

fitness model # co-optimal path fraction
minimum energy 3 931 510 681 533 6.14× 10−4

centroid energy 1 615 195 878 2.52× 10−7

m.e. pairs 17 338 903 092 2.71× 10−6

centroid pairs 2 239 218 3.50× 10−10

646633942726291657444754411573611388

64

66

33

94

27

26

29

16

57

44

47

54

41

15

73

6

113

88

Figure 4: Probability Pkl of mutation k (row) to be followed by mu-
tation l (column) following mutation k (row) using the pair distance
fitness function on centroid structures. The pseudo-temperature is
set to β = 1.0. Mutations are arranged in their order of appearance
in the MEA path. The boxes are scaled as 1/(1− lnPkl) to highlight
the uncertainties involved in determing the most likely evolution-
ary path. We note the high posterior probability for the sequence
54→ 47. The two nucleotides form a GC base pair in the human cen-
troid structure that was produced as the last step in the evolutionary
trajectory. The best weight of a trajectory ending with mutation 47
is about 1/8 of the trajectory shown here.

In the results, we have not penalized the probability of
introducing a backmutation in addition to the cost given
by the cost function (Eq. 3). The reason is that any
such additional penalty can be moved out of the model
completely. If one considers a model without any un-485

observed backmutations, say, 100× more likely, than one
with unobserved backmutations, the additional penalty of
ln 0.01 ≈ −4.61 is to be added to the given lnZ values in

Fig. 5. The huge differences in observed log-evidence
between models based on distance to the target struc-490

ture (Fig. 5) and models based on changes in free energy
(Fig. 8) is due to the possibility of finding permutations
which only improve in energy, while structures always lead
to change. Hence, energy-based models can come close
to the maximal observable log-evidence, while basepair-495

distance based models cannot. In addition, any model
that allows for negative costs to be assigned to beneficial
steps can have arbitrarily high log-evidence values.

For HAR1 in particular, many of the possible (p, u)
pairs have modest impact. As an example, most backmu-500

tations falling into the range 81 ≤ p ≤ 96, a hairpin loop,
in the ancestral and human structure, have limited impact.
Additional mutations in the stem of this hairpin, however,
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Figure 5: The impact of backmutations (left panel) and intermediate mutations (right panel) per site on the log-evidence (ln(Z)) for the
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for the original model not incorporating any non-fixed mutation. Left: backmutations at sites with known mutation. Right: intermediate
mutations at sites with differing ancestral and extant nucleotides.

are extremely unlikely to have occurred. The difference of
about 15 “nats” means that such a model has odds of only505

1 : e15, i.e., 1 : 3× 106 compared to a backmutation in the
loop region. Overall, no single intermediate or backmuta-
tion would have lead to a possible evolutionary path that
would be much more stable, given our cost functions.

5. Conclusion510

Guided by HAR1 as the paradigmatic application, we
have introduced here a suite of tools to investigate evolu-
tionary trajectories of secondary structures in detail. We
introduced a convenient visualization method for struc-
tural ensembles that enables intuitive insights into evo-515

lutionary changes of secondary structures at high resolu-
tion. A dynamic programming method makes it possible
to compile exact statistics over possible evolutionary tra-
jectories. Despite its exponential runtime the algorithmic
approach is efficient enough to handle systems with up to520

at least 20 substitutions, which includes at least all mod-
erate size structured RNAs. The approach proposed here
can be used to test whether rapid changes are associated
with altered selection pressures for novel RNA structures.
Although beyond the scope of this contribution, the same525

type of model can also be used to evaluate adaptive evolu-
tion of protein structures – all that is needed is a distance
measure to a target structure that correlates well with the
actual fitness effects, i.e., that fitness is largely determined
by structure.530

Furthermore, an extension of our model provides statis-
tics on the impact of intermediate mutation events that
have not been observed as fixed in the extant species. This

extension is computationally much more demanding com-
pared to the variant that includes only observed mutations,535

but provides position-wise information on the impact of
such mutation on the sequence.

Given a particular fitness model, it is quite possible
to observe a comparatively large number of paths from
the ancestral to the extant sequence that have equal cost.540

There are several reasons for this behaviour. First, con-
sider a set of mutations of nucleotides that are predicted
as unpaired in the ancestral and extant sequence. Given
the Turner energy model [16], it is unlikely that such a
mutation will lead to a change in the current structure.545

Mutations in a base pair that do not destroy the pair also
have minor impact. As such, the order of these substi-
tutions can be of minor impact for any given order. As
a consequence, these have to be considered as equivalent
since any relative order has the same overall effect. On a550

slightly larger scale, it stands to reason that a set of muta-
tions that impact different base pairs in the same stem
often yield different orders with the same cost. These
arguments mirror those given to favor partition-function
based models of RNA secondary structure prediction that555

provide posterior probabilities for base pairing. As with
RNA secondary structure prediction, we here also advo-
cate probabilistic answers as given by Fig. 3 for the last
mutational event or Fig. 4 to determine “temporal neigh-
bours”.560

A computational model assuming only selection against
increasing divergence from the modern human target struc-
ture correctly identifies the single difference between hu-
man and Denisovan HAR1 as the most likely last step
along the evolutionary trajectories. With that, we have565

shown that the rapid evolution of HAR1 from the last
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common ancestor between human and chimpanzee to the
modern human sequence can be explained by directional
selection for the more stable, modern secondary structure.
It is likely that the stabilization of the lower stem of the570

human HAR1 structure was the last step in its evolution
until now. Moreover the formation of the most upstream
stem was an early step in the human HAR1 evolution since
the last common ancestor with chimpanzee.

6. Software availability575

The software to investigate evolutionary trajectories
is available at: http://hackage.haskell.org/package/

MutationOrder.
It includes both variants of the algorithm (with and

without intermediate and backmutations), as well as a580

function to generate the required RNA landscape. Pre-
compiled binaries are available on github:

https://github.com/choener/MutationOrder/releases.
The software to visualize and compare structures is in

preparation as CS2-UPlot web tool.585

Supplemental RNA landscape data is available under
http://www.bioinf.uni-leipzig.de/

publications/supplements/17-014
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Appendix

A1 Secondary Structures of Human HAR1 Variants685

Variations of HAR1 within the human species are rare
and are found in less than 1% of human populations. Three
variants of HAR1 have been reported to date and all cause
changes to the wildtype structure (Fig. 6).
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Figure 6: Wildtype and human variations of the HAR1 structure. (a)
Wildtype centroid, (b) variant rs374630364 C47T centroid (the same
as Denisovan), (c) variant rs544386774 G113C centroid, (d) variant
rs183960348 C52T centroid and (e) variant rs183960348 C52T MFE.

A2 Comparative Dot-Plots690

Comparative dot-plots provide an alternative visualiza-
tion of differences between the structural ensemble of two
closely related sequences. The upper right triangle shows
the base pairing probabilities in two colors, one for each
input sequence. The lower left triangle displays the base695

pairs of the minimum energy structure.
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Figure 7: Base pairing patterns of the ancestral (black), Denisovan
(magenta) and modern human (green) HAR1 sequences. The plots
show the large difference between ancestral and Denisovan structures
(left) and the more subtle differences between Denisovan and the
modern human structure. Interestingly the 3’-most stem coincides
in modern human and the ancestral state, but is shifted in Denisovan.
On the other hand, the 5’ part of the structure is already close to
modern human in the Denisovan structure.

Impact of Back- and Intermediate Mutations

Depicted in Fig. 8 is the impact of including a back-
or intermediate mutation into the model. The maximal
ln(Z) value for the original model is ln(18!) ≈ 36.40 “nats”,700

ln(19!) ≈ 39.34 “nats” for intermediate mutations, and
ln(20!) ≈ 42.34 “nats” for backmutations. Further details
can be found in Sec. 4.3 in the main text.
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Figure 8: The impact of backmutations (top panel) and intermediate
mutations (bottom panel) per site on the log-evidence (ln(Z)) for the
HAR1 sequence with the centroid energy model. The ln(Z) values
shown do not include any energetic penalty for the relative prob-
ability of including an additional mutation compared to the model
with 18 observed mutations. The bold horizontal line is the ln(Z) for
the original model not incorporating any non-fixed mutation. Top:
backmutations at sites with known mutation. Bottom: intermediate
mutations at sites with differing ancestral and extant nucleotides.
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