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Abstract

Background: Flow cytometry (FCM) is a powerful single-cell based measurement
method to ascertain multidimensional optical properties of millions of cells. FCM
is widely used in medical diagnostics and health research. There is also a broad
range of applications in the analysis of complex microbial communities. The main
concern in microbial community analyses is to track the dynamics of microbial
subcommunities. So far, this can be achieved with the help of time-consuming
manual clustering procedures that require extensive user-dependent input. In
addition, several tools have recently been developed by using different approaches
which, however, focus mainly on the clustering of medical FCM data or of
microbial samples with a well-known background, while much less work has been
done on high-throughput, online algorithms for two-channel FCM.

Results: We bridge this gap with flowEMMi, a model-based clustering tool based
on multivariate Gaussian mixture models with subsampling and
foreground/background separation. These extensions provide a fast and accurate
identification of cell clusters in FCM data, in particular for microbial community
FCM data that are often affected by irrelevant information like technical noise,
beads or cell debris. flowEMMi outperforms other available tools with regard to
running time and information content of the clustering results and provides
near-online results and optional heuristics to reduce the running-time further.

Conclusions: flowEMMi is a useful tool for the automated cluster analysis of
microbial FCM data. It overcomes the user-dependent and time-consuming
manual clustering procedure and provides consistent results with ancillary
information and statistical proof.

Keywords: Flow cytometry; Clustering; Data analysis; Statistical analysis;
Microbial communities; Expectation-Maximization

Background
Flow cytometry (FCM) is a high-throughput technology to measure multidimen-

sional optical properties of single cells. Flow cytometry is widely used in medical

diagnosis and health research but there is also a large area of applications in the

context of complex microbial communities. Microbial communities are present ev-

erywhere in our environment. They are also used in biotechnological applications e.g.

for the treatment of waste water, the production of biogas or the manufacturing of

platform chemicals. Here, FCM can be used for process monitoring such as for test-

ing drinking water quality, process control and process improvement [1, 2, 3, 4, 5].

Natural systems can also be well described by flow cytometry and ecological mea-

sures such as diversity and stability indices that were recently established [6, 7, 8].
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Flow cytometry was also already used to analyze the mice gut microbiome [9] and

the human oral microbiome [10, 11].

The main concern in all of these applications is to follow microbial population

[12] or microbial community structure variations. Even machine learning methods

have been tested to identify exclusive strains in cytometrically measured in-silico

communities [13]. As the generation times of microbial cells are very short and

change population and community structures rapidly and thus also their interactions

with environmental surroundings, information about structure variations need to be

obtained in a very short time and in an automated way. Bioinformatics tools such

as flowCHIC [14, 15] and flowCyBar [16, 17] were developed to reveal insights into

microbial community variations.

While flowCHIC is an automated approach based on whole dot plot pixel den-

sities and can be used to reveal pairwise structural variations between microbial

communities, flowCyBar is based on gate/cell cluster information and provides in-

sight into community structures based on numbers of subcommunities, the position

of subcommunities within the dot plot and the number of cells inside subcommu-

nities. flowCyBar allows to follow community evolution and if environmental pa-

rameters are involved in the evaluation pipeline, correlation analyses between those

and subcommunity cell numbers can be performed in order to reveal functional de-

pendencies. Subcommunities of interest can be flow sorted which allows further cell

analysis employing next generation sequencing or proteomic approaches. Therefore,

flowCyBar is an essential tool to determine cytometric community characteristics.

To perform the flowCyBar analysis, subcommunities have to be clustered accord-

ing to their optical properties. These subcommunities are likely to have a certain

function within biological processes and show correlations to certain environmental

(abiotic) factors that can be revealed by using flowCyBar. The clustering of these

subcommunities is the only step in the evaluation pipeline which is still performed

manually in an experience-based and time-consuming way due to the high com-

plexity of the data. Different from standard cytometric data of human samples,

where cells are usually differentiated using a variation of labeled antibodies, and

of different fluorescent excitations and emissions (resulting in only two or three

different subpopulations per each 2D-plot) in bacterial flow cytometry the number

of subcommunities can increase to up to 30 in each 2D-plot. Only two parameters

(usually a nucleic acid dye and FSC) are sufficient to resolve bacterial community

structures and follow their dynamics. The appearance of dozens of different clusters

within only two dimensions is only known for bacterial samples and requires special-

ized evaluation procedures. These clusters provide information on cell abundance

changes and suspicious cells can further be processed after cell sorting.

The automatic definition of that many gates in a 2D-plot is a bottleneck that

cannot be solved by existing tools with satisfactory precision. To alleviate this issue,

we developed a statistical model-based approach with as few as possible parameters

(that require user control) that fulfills all the requirements on the outcomes of the

clustering procedure of microbial community data.

Therefore, the approach (i) regards only two channels, (ii) recognizes typically

between 10 to 20 clusters by (iii) evaluating high cell numbers per sample (200 000

cells) in a (iv) short time because samples are taken within generation times of
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bacteria (usually 60 min). The data should be available in-time to allow for on-line

monitoring approaches.

Previous work
To identify cell clusters, several approaches have been developed in the past three

decades. These approaches can be classified into (i) manual, (ii) semiautomatic and

(iii) fully automatic approaches.

(i) Manual approaches are common and are represented by cytometric visualiza-

tion and evaluation software like the commercially available FCS Express [18], the

device-specific FloMax [19], and Summit [20], or the freeware FlowPy [21]. All of

these tools provide a 2D graphical representation of cytometric data. The measured

parameters (e.g. forward-scatter (FSC) or fluorescence intensity) used as axes of a

2D dot plot can be selected by the user. Each axis is divided into channels repre-

senting the signal intensity of an event after amplification. To mark cell clusters,

the user can draw rectangle, ellipsoid, quadratic or polygonal regions inside the dot

plot. Each of these regions identifies a cell cluster. The counts (number of cells) for

each cell cluster can be extracted for further analysis. These approaches are time-

consuming and user-dependent as the number of marked cell clusters as well as the

position and the size of the marked regions is based on the experience of the user

[22, 23, 24].

(ii) Semiautomatic approaches are represented by cytometric visualization and

evaluation software such as FlowJo [25]. Besides the manual marking of cell clusters,

FlowJo provides a semiautomatic auto-clustering tool to identify cell clusters based

on equal probability distributions which is restricting the shape of the clusters. The

user can adjust the size and the shape of each identified cell cluster by moving the

mouse over the dot plot and changing the vertices of the polygon gate. The number

of clusters that can be identified in this way is not restricted and the counts for

each cell cluster can also be extracted for further analysis. As the cell clusters

are identified in a semiautomatic way, this approach is less time-consuming but

the results still need manual effort by the user and are dependent on the user’s

experience.

(iii) Automated approaches comprise software tools that were developed to pro-

vide user-independent and reproducible clustering results of flow cytometry data.

Recently, new approaches were developed to achieve clustering results automatically

that fit the expectations of the user.

flowFP [26] is using the Probability Binning (PB) algorithm [27]. The binning

procedure divides the two-dimensional dot plot into rectangular regions (bins) that

contain nearly equal numbers of data points. This step of dividing the dot plot areas

is performed multiple times based on the number of recursions adjusted by the user.

SamSPECTRAL [28] uses a modified spectral clustering algorithm which is based

on data subsampling (faithful sampling), graph-theoretical principles and the k-

Means algorithm [29]. SamSPECTRAL has the capability of identifying arbitrary shape

clusters since it is a non-parametric approach that makes no assumptions on the

shape and distribution of clusters. The main parameters of this approach are the

scaling parameter sigma defining the ”resolution” in the spectral clustering stage

and the separation factor being a threshold that controls to what extend clusters
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should be combined or kept separated. In principle, with a larger sigma smaller

clusters will be identified and with a larger separation factor more clusters will be

identified. Both parameters have to be adjusted properly by the user. A strategy

to adjust both parameters by reference to one’s own data is provided in the user

manual of the package. The general way is to run SamSPECTRAL multiple times

using the same data and to change both parameters until they fit the requirements

described in the user manual.

The concept of flowDensity [30] is sequential bivariate clustering. flowDensity

estimates the region around cell populations using characteristics of a marker den-

sity distribution (e.g. the number, height, and width of peaks and the slope of

the distribution curve). Predefined cell subsets are identified based on the density

distribution of the parent cell population by analyzing the peaks of the density

curve. flowDensity aims to gate predefined cell populations of interest where the

clustering strategy is known.

flowMeans [31] is based on the k-Means algorithm. The number of modes is

counted in every single dimension followed by multidimensional clustering. Adja-

cent clusters are merged using Euclidean or Mahalanobis distance and the number

of clusters is determined by a segmented regression algorithm to detect the change

point in the distance between the merged clusters. As this approach is based on the

k-Means algorithm which is not considering cluster distributions, it is used to find

equal-sized, non-spherical clusters.

flowClust [24] is using a model-based clustering approach based on the estimation

of distribution parameters of clusters by using the Expectation-Maximization (EM)

algorithm. The number of clusters to be found can be fixed or determined by using

the Bayesian Information Criterion (BIC) in a manual way. The number of data

points per cluster is calculated and outliers can be identified by specifying quantiles

(e.g. 90%) of the clusters. This approach is providing good results for Gaussian

distributed cell clusters. An extension, flowMerge [32] provides automated selection

of the best number of clusters, as well as merging overlapping cluster components.

FLAME [33] is an online software placed on the public server of the Broad Institute

(Cambridge, Massachusetts, USA) and is a model-based clustering approach using

the EM algorithm to estimate the distribution parameters of clusters. To determine

the appropriate number of samples, the Scale-free Weighted Ratio (SWR) was in-

vented. This measure is based on the average Mahalanobis distances, normalized

for the distinct variances (which determine shape, dispersion, orientation, etc.) of

different clusters, that are computed for pairs of points within and across clusters.

FLAME also provides the construction of a global template of clusters which can be

used to identify clusters across samples and to follow dynamics.

From this review, we can draw the conclusion that each of the stated tools has

advantages towards manual clustering if the complexity of the data is not that high

(e.g. a low number of clusters or a low number of data points) and the information

content of the clustering results is restricted to general statements like the mem-

bership of a measured cell to one of the identified clusters. Each of these tools has

different limitations. Based on the data we work with, and which forms the basis of

the later evaluation, we point to the following limitations shared to some degree by

the above-mentioned tools. Some of the tools are not practicable for microbial flow
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cytometry data that are different from medical data. The most important point

here is the abundance of clusters we are faced with, while medical data tends to

have few, mainly two, clusters in samples. Furthermore, our data have only two

channels but a large number of distributed subcommunities within this range. We

detect changes in the structure of bacterial communities by counting numbers of

subcommunities per 2D-plot by recognizing the position of the subcommunities in

the same 2D-plot and by counting cell numbers per subcommunity (technically, per

gate). This type of analysis can be performed every few minutes without notica-

ble effort time or financial effort. A wealth of information can be drawn from the

clusters if community dynamics (i.e. dense sampling) are pursued.

Medical applications e.g. in oncology or hematology are the broadest field for the

use of flow cytometry. Thus most of the automated approaches were designed to fit

the requirements of these data sets. The cells measured in medical applications are

relatively big (e.g. size of blood cells is around 10-20 µm) and are usually labeled

with differently fluorescent antibodies that specify the cell type. As a result, the

cytometric data of one sample provide multiple fluorescence parameters besides the

intrinsic cell parameters such as forward-scatter (FSC) or side-scatter (SSC). Sev-

eral 2D plots are required to describe all cell types in a typical sample. Therefore, the

number of gates per one 2D plot is frequently low and does not surpass 3 to 5 sub-

populations which can be seen in data sets such as GvHD (graft-versus-host disease

[34, 22], http://flowrepository.org/id/FR-FCM-ZZY2) or HSCT (hematopoietic

stem cell transplant [22], http://flowrepository.org/id/FR-FCM-ZZY6).

In microbial applications, in particular in applications of microbial community

analyses, the cells are much smaller (0.7-2 µm) and are usually treated with only one

fluorescent dye to mark all cells in a community and to separate the cells from noise

and debris. Commonly, DAPI (4’,6-di-amidino-2-phenyl-indole) or SYBR Green are

used that stain the DNA or the nucleic acid of all cells, respectively. In contrast

to the highly resolving DAPI the resolution of microbial communities by SYBR

Green is much lower and results mainly in only two subcommunities such as low

nucleic acid (LNA) and high nucleic acid (HNA) bacteria. Recently, an attempt was

made to resolve these two subcommunities even further by applying a deconvolution

model [35].

Instead, the data generated from microbial community measurements using DAPI

appear as highly complex system which encompass high numbers of taxonomic

entities and fast variations in physiological states of the measured cells [4, 9, 10].

In addition, DAPI is prone to find rare cell types in a complex community as its

fluorescence resolution is of high quality. As a result, the number of clusters within

the cytometric dot plot can be very large and their separation becomes a difficult

problem.

Based on our desiderata as mentioned above, this leads to the following require-

ments on the clustering algorithm: it must (i) be fast enough, (ii) determine the

number of gates automatically, (iii) separate cell clusters from background clusters

containing irrelevant information, and (iv) calculate the real number of data points

for each cell cluster. The previously presented automated approaches hit their limits

trying to by fulfill these requirements and do not produce adequate results. As a

consequence, the identification of cell clusters is still performed in an experience-

based, manual way in microbial flow cytometry. This severely limits the amount of

http://flowrepository.org/id/FR-FCM-ZZY2
http://flowrepository.org/id/FR-FCM-ZZY2
http://flowrepository.org/id/FR-FCM-ZZY6
http://flowrepository.org/id/FR-FCM-ZZY6
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data that can be processed. To improve this situation, we developed flowEMMi, a

tool that is able to identify real cell cluster distributions in microbial FCM data

quasi on-line in an automated way and to export necessary abundance information

of every cell cluster for further analyses.

Methods and implementation
Conceptual Outline

Each single cell of a microbial community is visualized as a data point in a two

dimensional cytometric dot plot. The cell is described by physiological properties

such as cell size measured by forward-scatter (FSC) and number of chromosomes

per cell measured by fluorescence intensity using DAPI (4’,6-di-amidino-2-phenyl-

indole). Both physiological properties were used in recent studies of complex micro-

bial community systems with success [36, 4, 9]. Additional parameters can also be

used for evaluation such as cell density (side-scatter (SSC)) or pulse width [37, 38].

Cell clusters are typically drawn as ellipsoid regions within the dot plot by using

cytometric visualization and evaluation software such as Summit or FlowJo. Ellip-

soids as geometric boundaries make sense for at least three reasons. (i) They are

easy to calculate. (ii) They conform to the way practitioners typically define bound-

aries of clusters in cytometry e.g. to define cell subsets for cell sorting. (iii) More

importantly, an ellipsoidal shape conforms well enough to identified clusters in real

data because cells typically distribute as bivariate Gaussian curves [37].

Let X ⊂ Rk be the set of data points x ∈ X obtained from an experiment. The

data considered here typically has k = 2, since clustering is performed on projections

onto two parameters. Ellipsoid regions of arbitrary orientation are described via the

equation (x− v)TA(x− v) = 1 where v is the vector-valued position of the center,

A is a positive definite matrix, and x denotes solution vectors to the boundary.

The corresponding statistical density function is the multivariate normal P (x) ∝
exp

(
−(x− µ)TΣ−1(x− µ)

)
. Here µ ∈ Rk is the mean, Σ ∈ Rk×k the covariance

matrix, and x ∈ Rk are points whose density is given by P (x). Having more than

one Gaussian distribution leads to a mixture model
∑
i πiPi(x), with πi (πi ≥

0,
∑
πi = 1) describing the weight/probability of each Gaussian. From a statistical

point-of-view, multivariate normal distributions provide the framework with which

to infer the most likely position of the ellipsoid regions [39, 40]. The parameter

space of the model is written more succinctly as θ = (π, {µ1, . . . , µn}, {Σ1, . . . ,Σn})
for a mixture model with n elements, hence logL(θ|X) = Pθ(X).

As the real distribution parameters are unknown, all parameters, i.e., mean and co-

variance for each individual Gaussian and the weight vector π have to be estimated.

Since no closed form solution exists, an iterative procedure has to be employed. It

appears natural to use the expectation-maximization (EM, [41]) algorithm which is

employed to find maximum likelihood estimates of unknown parameters of statis-

tical models. The estimated parameters might not be the best solution as the EM

algorithm is only guaranteed to converge to a local optimum.

In the E (expectation) step (Eqn. 1), the (log-)likelihood is calculated based on

the estimated parameters of each cell cluster of the current iteration. In the M

(maximization) step (Eqn. 2), new parameters of each cell cluster are computed to
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maximize the (log-) likelihood from the E step.

Q(θ|θt) = EZ|X,θt logL(θ;X,Z) (1)

θt+1 = arg max
θ

Q(θ|θt) (2)

Both steps are performed iteratively until a termination condition is fulfilled by

using the following criterion:

| logL(θt)− logL(θt−1)| ≤ 1 (3)

As the likelihood function is steadily growing, the estimated parameters of each cell

cluster are converging toward a local optimum. Upon termination of the algorithm,

every two-dimensional data point has a probability to belong to one of the deter-

mined cell clusters that are defined by the estimated parameters of the underlying

distribution. Due to the steady growth of the log-likelihood function, the EM algo-

rithm only finds one local optimum and has therefore to be initialized several times

with different start values. Nevertheless, even after a large number of initializations

it is possible that the global optimum for the numbers of initializations will not be

found and that the calculated estimates of the parameters are not the best possible

solution [42].

Usually, the EM algorithm needs to be initialized with start (prior) values for

each distribution parameter in the first (E) step. The number of parameters k to

be initialized is dependent on the number of clusters c and is equal to 6c − 1.

For c = 20, the user would have to pick 119 start values that also need to fulfill

some requirements (e.g.
∑c
i=1 πi = 1). This is a time-consuming procedure and is

prone to cause errors. For an easier initialization we changed the order of the steps

by choosing the M step first. Thus, the probabilities of each data point belonging

to one of each cluster are randomly sampled from a Dirichlet distribution, which

can be used as a prior distribution for the probabilities [43] with hyper parameter

α = 1 ensuring that the probabilities of one data point sum up to 1. Based on the

probability matrix the distribution parameters are calculated first and in the next

step the (log-) likelihood is calculated based on the estimates of the parameters

of the first iteration. If good prior distribution parameters are available (after the

subsampling procedure, see section Data reduction – Subsampling), these are used

instead for the initialization.

Implementation

To be able to pass objects from R to C++ and back and to achieve an efficient

implementation of the EM algorithm we used Rcpp [44] and the Eigen C++ tem-

plate library (version 3.3.3) which is provided by the RcppEigen package (version

0.3.3.3.1, [45]). As the EM algorithm is based on linear algebra operations, includ-

ing matrix-vector and matrix-matrix operations, RcppEigen enables convenient ac-

cess to a high-performance framework to implement these operations efficiently.
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This package needs to be installed to the R library and is essential for the use of

flowEMMi.

Other packages that need to be installed to the R library for reading and working

with the standardized .fcs files, visualizing the cytometric dot plots, calculating

the statistical significance of the results and for the random initialization of the

EM algorithm are flowCore [46], flowViz [47], ggplot2 [48], randomcoloR [49],

mixtools [50] and gtools[51].

Removal of technical noise and beads

Technical noises (such as instrumental noise and cell debris) are unavoidable during

a cytometric measurement. These are represented by extremely low fluorescence

value or scatter signals in each dot plot. Before automatic determination of gates,

such technical noises should be removed, in addition to the scatter and fluorescence

signals of beads, which are implemented in each measurement for the alignment of

samples. In this study, technical noises and beads per sample were removed with

three steps (Fig. 1) by the software FlowJo [25].

First, all events were visualized in the 2D-dot plot of forward-scatter (FSC) vs.

side-scatter (Fig. 1, a), and a parent gate (FSC-SSC) was set to remove technical

noises from FSC and SSC channels. Second, similarly, technical noise from the

channel of the DAPI fluorescence was removed by setting a parent gate (FSC-DAPI)

in the 2D-dot plot of FSC vs. DAPI fluorescence (Fig. 1, b). Third, bead events

were removed via specific gates (Fig. 1, c) with the goal of retaining only events that

represent cells (Fig.1, d). Once created, the FlowJo workspace containing all these

steps can be saved and automatically applied to all samples of the experiment. The

final data, only containing cell events, are used as input for flowEMMi.

Finding the best number of clusters

In microbial flow cytometry a large number of clusters within one sample is very

common. Furthermore, the actual number of clusters is unknown independent of the

complexity of the data. To overcome the obstacle of a manual selection, flowEMMi

was designed to determine this number automatically. Since the number of clusters

is unknown, a (usually larger) range (e.g. c ∈ {2, . . . , 20}) has to be defined by the

user to find all clusters at the first run of flowEMMi. A larger range is recommended

because flowEMMi should generally have no parameters that need tuning and return

the most appropriate number of clusters regardless of whether it is low or high. This

prevents time-consuming initializations of the EM algorithm and an overestimation

with excessive numbers of clusters.

To determine the most appropriate number of clusters we used the Bayesian In-

formation Criterion (BIC, [52, 53]). Besides other model selection criteria like the

Integrated Complete-data Likelihood (ICL) or Slope Heuristics, the BIC is known

to provide the true number of clusters for Gaussian mixture models in most cases

[39]. Such selection criteria have been used successfully before [32]. Eqn. 4 describes

of calculation of the BIC for c clusters, with L(θ) being the achieved likelihood for

a model θ with c clusters, k parameters and i data points.

BIC(θ) = −2 logL(θ) + k log i (4)
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(a) Removal of technical noise in FSC vs. SSC
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(b) Removal of technical noise in FSC vs. DAPI

0.5 µm beads

1.0 µm beads

10
0

10
1

10
2

10
3

10
4

Forward-Scatter

10
0

10
1

10
2

10
3

10
4

D
A
P
I-
F
lu
o
re
sc
en
c
e

(c) Bead removal in FSC vs. DAPI

10
0

10
1

10
2

10
3

10
4

Forward-Scatter

10
0

10
1

10
2

10
3

10
4

D
A
P
I-
F
lu
o
re
sc
en
c
e

(d) Dot plot only containing cells

Figure 1 Steps for removing noise and beads from the cytometric dot plot. (a) Technical noise
removed by setting a parent gate in forward-scatter vs. side-scatter. (b) Technical noise removed
by setting a parent gate in forward-scatter vs. DAPI fluorescence. (c) Beads removed in
forward-scatter vs. DAPI fluorescence. (d) Cytometric dot plot only containing cells used as input
for flowEMMi.

The BIC curve can be plotted and shows the BIC value for each number of clusters

c. In most cases, the curve has a positive exponential trend and for a particular c

the trend of the curve is getting nearly linear. Thus, the value of c at this point

gives a good hint about the most appropriate number of clusters within the sample.

Therefore, we defined a threshold for the difference of the BIC value between c

and c + 1 for the whole range of c. If this difference is below 50 for the first time

for the whole range of c then this particular value of c is considered as the most

appropriate number of clusters cBIC≤50 for a given parameter set θc=1, . . . , θc=n

where we suppress the individual θ’s in the notation below:

cBIC≤50 = arg min
c

(|BIC(c)− BIC(c+ 1)| ≤ 50) (5)
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Nevertheless, it is possible to select a higher value for c than suggested by the

BIC. A higher value would mean that more clusters are found but the increase of

information/likelihood of the model is only marginal.

Data reduction – Subsampling

The running time of the EM algorithm is dependent on the dimension of the data

points, the initialization values of the model parameters (π, µ, Σ), the number of

data points i and the number of clusters c to be found. The dimension is constant

and as the initialization values are sampled randomly (see section Idea, last para-

graph), the effect on the running time of the EM cannot be determined or adjusted

from the very start. Good initialization values result in a low number of iterations

and therefore decrease the running time whereby poor initialization values result in

a high number of iterations and therefore increase the running time.

The number of data points i used for the clustering can be adjusted and has a

notable and measurable influence on the running time. It was shown before that

the results of the EM running on a subset of all data points is likely to provide

distribution parameters that differ not that much from the distribution parameters

resulting from the EM running on all data points [54]. As the measurement of the

cells does not follow a certain order (e.g. small cells first, big cells last), the data

used as input for the EM are unordered, too.

Thus, a subset of cells can easily be selected by choosing e.g. every 20th data point

of the full data set. With the selection of a subset it is possible to reduce the running

time of the EM in order to rapidly get a good approximation for the estimates of

the model parameters (π, µ, Σ) of each cluster c. For the evaluation of flowEMMi we

used samples containing 200 000 cells (without noise and beads) which ensures a high

statistical significance of the appearance of cells in respective segregated subsets.

Measuring fewer cells produces less precise statistical data, therefore, subsampling

is recommended instead of working with fewer measured cell numbers per sample.

By creating a subset with, say, every 20th data point big clusters will still be visible

and detected by flowEMMi. Only those clusters with a very low abundance may get

lost. By combining the subsampling procedure with the BIC (see section Finding

the best number of clusters), the best number of clusters c can also be determined

automatically in a very short time.

Consequently, the reduction of the number of data points and the use of the BIC

reduces the running time of the EM and provides the most appropriate value for

the number of clusters c as well as estimates for the model parameters of each

cluster (π, µ, Σ). After this step, these outcomes can be used as already fitted

initialization values for the EM running on the full data set thus preventing an

elaborate and inaccurate initialization. In addition, instead of random initialization

values for samples with similar structures the same fitted initialization values can

be used as input which further increases comparison between samples and decreases

the running time substantially.

Data separation

Another important step is to eliminate irrelevant data points occurring from tech-

nical noise, beads or cell debris. These data points are not needed for the analysis of
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the cell clusters and therefore have to be separated from the real data representing

the cells (see section Removal of technical noise and beads). In addition, not all cells

cluster as condensed ellipsoid regions and are instead more evenly distributed across

the dot plot. As every cluster algorithm generally is designed to assign every data

point to one cluster, a mixed model was developed to create a background model

for the evenly distributed data points and a foreground model for the relevant cell

data points.

Cell clusters form condensed ellipsoid regions within the dot plot but the data

points of a background cluster spread over a large area. Thus, the variance (of

the main diagonal of) Σ of a cell cluster distribution is much smaller than the

variance of a background cluster distribution. A threshold can be defined to separate

the clusters with very high variance from the clusters with smaller variance. A

maximum standard deviation σ (square root of variance) value is predefined to

separate background clusters from foreground clusters but can be changed by the

user if required e.g. if only very small clusters (rare subcommunities) or bigger

clusters (dominant subcommunities) should be found. We default to a setting where

a cluster is set as a background cluster if mind(
√

Σd,d) ≥ 2 500.

Nevertheless, it was shown that the cell numbers of background distributions,

denoted as off-gate cells, are of importance as they can be an indicator for occurring

disturbances in microbial systems [4]. For this reason, the off-gate cell number of

all background clusters is saved in a readable text file besides all cell numbers of

the detected cell clusters and can be used for further analyses.

Calculation of cell numbers/Confidence intervals

After the clustering procedure, the reduction of the data set, and the separation

of background clusters, some cell clusters may not have a clear ellipsoid shape and

can also contain outliers. For Gaussian distributions, the calculation of confidence

intervals [55] is a statistically legitimate way to select data points having a certain

significance for being part of an identified cluster. As a confidence interval is the

complement of the level of significance (usually called p-value), a 95% confidence

interval reflects a significance level of 0.05 which is most commonly used in statistics

[56].

For multivariate Gaussian distributions the confidence interval of each cell cluster

c is determined by its mean vector µ and its covariance matrix Σ. Based on these

distribution parameters, the data points lying inside the confidence interval q = 1−p
can be calculated using the following equation.

color(x) = arg max
c

N (x|µc,Σc) (6)

A point x is considered to be part of the confidence interval for the color c, if the

following two Dirac-δ-functions determine that both, the optimal color for x is c,

and the scaled density is higher than q.

confident(x, c) = δ(c = color(x))δ(N (x|µc,Σc)(1− πc) ≥ q) (7)

As a consequence, the shape of the data points enclosed by the confidence interval

is elliptic. If required, the user can change the confidence level (e.g. to 90% or 99%).
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After the calculation of the confidence intervals, the numbers of data points of each

cell cluster are saved in a .txt file. These numbers can be used to compare the

result of the automated clustering with the results of the manual clustering and for

further analyses.

Results and conclusion
A real FCM sample set containing 10 samples (https://flowrepository.org/id/

RvFrxWfLS98ghWy8f9bAx7E0JWpcgNiIfpBmJjtbyScv1SgtgF8ACPnlXGEkTHYb) was

used to investigate if the methods described above provide adequate results and

make our tool flowEMMi suitable for automatic clustering in cytometric microbial

community data. In this section, the sample InTH 160712 025.fcs (Figure 1) was

used representatively. The clustering results of the other 9 samples can be found in

the Supplementary information.

First, we tested whether the optimal number of clusters c can be determined using

the BIC. To achieve good approximations for the number of clusters c as well as

for the estimates of the model parameters of each cluster (π, µ, Σ) in this sample,

the EM algorithm was initialized with a subsample of all data points (every 40th

data point) and randomly sampled cluster probabilities for each data point. Before

subsampling, technical noise and beads were removed. After removing noise and

beads 200 000 data points remained in the .fcs file. As only every 40th data point

was used in this step this means that only 5 000 data points were used as input

of flowEMMi. As the real number of clusters c was unknown the minimum number

of clusters to be found was set to 2 and the maximum number of clusters to be

found was set to 20. Figure 2 shows the results of flowEMMi after subsampling and

calculation of the BIC.

To show the impact on the choice of the number of clusters we provide, in addition

to the estimated number of c = 13 clusters (Fig. 2c), two extra clustering results.

One result gave a very low number of c = 5 clusters (Fig. 2d), and the other of

c = 20 which are too many clusters (Fig. 2e). c = 13 seems to be an appropriate

value as the trend of the BIC curve is nearly linear after this point. The difference

of the BIC value between c = 13 and c = 14 is below 50 for the first time for the

whole range of c. This result can be derived by looking at the plot of the BIC curve

(Fig. 2a) as well as output information of flowEMMi.

As the number of data points in the subsampling step is only 1
40 of the original

number it is possible that some clusters are missed after subsampling. Due to that

and the possibility that one or more clusters may be identified as background clus-

ters in the full data run, c = 13 can be seen as a very conservative value which allows

to identify the main clusters. If the user wants to detect rare clusters the number

of clusters to be found should be set higher than suggested by the BIC for the full

data run (e.g. c ∈ {13, . . . , 16}). We can say that the first run of flowEMMi using

a subsampled data set and the BIC provided the appropriate value for the number

of clusters c as shown by the BIC curve (Fig. 2, a) and good approximations for

the parameter estimates (π, µ, Σ) of each cluster. These data are saved as output

of flowEMMi and can be used as prior parameters for the full data run.

Then it was tested if the subsampling procedure decreases the running time by

providing good estimates for the number of clusters c and good approximations

https://flowrepository.org/id/RvFrxWfLS98ghWy8f9bAx7E0JWpcgNiIfpBmJjtbyScv1SgtgF8ACPnlXGEkTHYb
https://flowrepository.org/id/RvFrxWfLS98ghWy8f9bAx7E0JWpcgNiIfpBmJjtbyScv1SgtgF8ACPnlXGEkTHYb
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for the parameter estimates of each cluster. flowEMMi was executed three times

without and with usage of the subsampling procedure. Both ways were compared

by measuring the total running times as well as the numbers of iterations for each

of the three runs needed for c ∈ {13, . . . , 16}. Without subsampling flowEMMi was

initialized with a range for the number of clusters to find c ∈ {2, . . . , 20} with only

one initialization. With subsampling, the same range was defined and 10 random

initializations were executed. Then, the outputs of the subsampling procedure were

used as input for the full data run with a smaller range for c ∈ {13, . . . , 16} and

only one initialization was executed to keep the comparability to the values achieved

without subsampling. Table 1 shows the outcomes of this comparison.

Number of iterations for c ∈ {13, . . . , 16} Total running time (mm:ss)
mean SD mean SD

without subsampling 228 83 24 : 11 00 : 24
with subsampling 102 31 05 : 31 00 : 34

Table 1 Comparison of running time without and with usage of the subsampling procedure. Mean
values (mean) and standard deviations (SD) of the total running time and the number of iterations
for c ∈ {13, . . . , 16} were calculated based on three executions of flowEMMi, respectively.

We can draw the conclusion that the subsampling procedure decreases the number

of iterations needed for c ∈ {13, . . . , 16} up to approximately 60% with a much

smaller standard deviation and the total running time up to approximately 75%

with a nearly similar standard deviation. Therefore, we strongly recommend to use

the subsampling procedure in order to achieve good results in a short time.

In the next step, the full data set is used as input with the extended range for

c ∈ {13 . . . 16} to find rare clusters as calculated by the BIC and the prior parameter

estimates of each cluster as calculated before by use of the subsampling procedure.

Now, an additional threshold was defined to separate cell clusters from background.

Figure 3 shows the final clustering results of flowEMMi running on the full data set.

Only clusters with a standard deviation below the threshold value are marked

as cell clusters and are plotted in colors distinct from the gray background. In the

next section, a benchmark procedure is performed to compare these final results i)

to the results of manual clustering using FlowJo and ii) to the results obtained by

the other tools.

Benchmarking

To compare the results of flowEMMi with the manual clustering procedure, the

sample InTH 160712 025 (Fig. 1, 2 and 3) was clustered independently by five

expert users to identify the number of clusters, the range of the abundance values of

all clusters and the percentage of background and foreground cell numbers based on

200 000 cells. For manual clustering the commercial program FlowJo was used and

for comparison with the data generated by flowEMMi the data were biexponential

transformed as by default. the following formula was used: 10(mean/(65 536/4)). Note:

The value of 65 536 corresponds to the resolution of the cytometer device (here:

InFlux, BD Bioscience, New Jersey, USA). For comparison, only those clusters found

by flowEMMi that have the same or similar mean values in both parameters (FSC

and DAPI-Fluorescence) as the clusters found by manual clustering are considered
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# clusters Range of abun-
dances (%)

Cell numbers (%) # congruent
clusters

Foreground Background
flowEMMi 12 1.56 - 20.72 71.6 28.4 12
User 1 13 0.25 - 27.7 76.5 23.5 10
User 2 15 0.21 - 30.0 82.1 17.9 11
User 3 13 0.24 - 28.2 79.1 20.9 11
User 4 16 0.26 - 31.2 90.7 9.3 11
User 5 15 0.22 - 32.1 91.6 8.4 11

Table 2 Comparison of clustering results from manual clustering performed by 5 experts using
FlowJo and automated clustering using flowEMMi. Compared were i) the number of clusters that
were found, ii) the range of the abundance values of all clusters, iii) the cell numbers of
foreground/background cell and iv) the number of congruent clusters that were found by the user and
flowEMMi, respectively. Congruent clusters are cell clusters having the same or similar mean values in
both parameters (FSC and DAPI-Fluorescence).

Tool Running
time
(h:mm:ss)a

Output features

Determine num-
ber of clusters

Shape of
clusters

Separate
background

Calculate cell
numbers

flowEMMi 0 : 05 : 31 yes ellipsoid yes yes
flowFP 0 : 00 : 03 no rectangular no not applicable
SamSPECTRAL 0 : 06 : 25

space-part.
arbitrary no not applicable

flowDensity 0 : 00 : 02 no rectangular no not applicable
flowMeans 0 : 00 : 17

space-part.
non-
spherical

no not applicable

flowClust 1 : 15 : 30 yes ellipsoid no yes
FLAME −∗ −∗ −∗ −∗ −∗

Table 3 Comparison of automated clustering approaches. Automated approaches were compared
regarding the running time and the abilities to identify rare cell types, to separate cell clusters from
background clusters and to calculate the real cell numbers for each cell cluster. a Running time
calculated on a Intel(R) Core(TM) i5-3210M CPU @ 2.5 GHz with 4096MB RAM and Windows 7
Enterprise 64-Bit Edition. FLAME: “−∗” denotes that no results were received as our submitted ”jobs”
were always in the queue for several days and later cancelled by the server. flowEMMi is the
implementation discussed in this work. space-part. denotes k-means type algorithms that do not
produce tight clusters.

and counted. Table 2 shows the outcome of this comparison. The mean values of

each cluster calculated by FlowJo and flowEMMi are given in the additional file

025.csv which is part of the file tables.tar.gz.

It can be seen that the number of cell clusters found by the expert users is in the

similar range of the 12 clusters found by flowEMMi and varying from 13 to 16. The

range of abundances and the proportions of foreground and background cell numbers

is slightly in favor of the expert users which covered more cells within the clusters.

Further 9 samples were tested in this regard. The outcomes can be seen in the

Supplementary information. For flowEMMi and all previously introduced automated

clustering tools (flowFP, SamSPECTRAL, flowDensity, flowMeans, flowClust and

FLAME) we also compared the running time, the abilities to determine the number

of cell clusters automatically, to separate cell clusters from background clusters and

to calculate the cell numbers for each cell cluster. Table 3 shows the results of this

comparison.

In addition to this table, the clustering results of all tools are displayed in Fig. 4.

Table 3 and Fig. 4 show that none of the other tools used for this comparison

can separate cell clusters from background clusters. This is important as not only

the cell numbers of real cell clusters can be used for further evaluation tools but
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also background cells as additional information which is useful for some applica-

tions. Both, the number of predicted cell clusters, and the relative number of cells,

predicted to be part of clusters are important. As such, any tool that severely un-

derestimates the number of clusters will almost certainly mispredict the number

of cells that form clusters which makes downstream analysis complicated and can

lead to misinterpretation of results. A reasonable estimate of the correct number

of clusters is only provided by flowEMMi and flowClust. For SamSPECTRAL and

flowMeans the calculated number is in a good range but too small. The correct

shape of clusters and therefore the required distribution parameters are only pro-

vided by flowEMMi, flowClust and SamSPECTRAL. The shape of clusters produced

by all other tools does not reflect real cell cluster distributions. In addition, the run-

ning time of flowEMMi is with 15 times lower than the running time of flowClust

and achieves better results.

flowEMMi provides all information needed for the evaluation of microbial commu-

nity FCM data. It fulfills all the requirements of the users and outperforms other

tools that were tested with regard to running time and output features.

Discussion
We compared the outcomes of flowEMMi to the outcomes of the manual clustering

performed by 5 expert users (Table 2) using FlowJo based on one representative

sample (Fig. 1, 2 and 3). The clusters found manually by using FlowJo and auto-

matically by flowEMMi were very similar concerning the percental abundances and

the location of the cell clusters. flowEMMi slightly underestimated the abundances

of cell clusters which might be caused by the fact that manually set clusters do not

follow statistical conditions e.g. confidence intervals. Cell clusters only containing a

small number of cells typically (at least for our data) do not conform to a Gaussian

distribution, and instead have a mostly flat density.

Furthermore, cell clusters that are big and isolated very often vary in size and

comprise only low numbers of cells which nevertheless seem to belong to the respec-

tive cluster but without statistical confidence. flowEMMi may not recognize such

clusters since the cells might not be within the required confidence interval of the

respective cluster and thus are not assigned with statistical significance. This gives

an additional value to the quality of the clustering result. Nevertheless, the size

of the cell clusters can be controlled by the user by decreasing or increasing the

confidence interval.

We put an additional focus on the comparisons between flowEMMi and other

automated approaches (Table 3). By using flowFP, one bin is always divided into

two smaller bins of the same size. Therefore, the size and the location of each cluster

is constrained to spatial subdivison and the number of clusters to be found is always

a power of two where the exponent is the recursion depth. The clustering results

can also not be used for cell sorting as the cells of interest are always surrounded

by a rectangular region that contains more cells which are not of interest and is not

reflecting the real distribution of the cell cluster.

By using SamSPECTRAL, even with adjustment of both parameters (sigma and sep-

aration factor) as described in the user manual, the number of clusters that were

found was in general too small. Besides, the final results of SamSPECTRAL are always
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achieved after a subsampling procedure which is necessary to keep the running time

of large data sets in an acceptable scale. The cell numbers per cluster are therefore

always relative to the numbers of cells of the reduced input data. flowDensity is

primarily designed to gate predefined cell populations of interest where the cluster-

ing strategy is known. As densities of cell clusters are often overlapping within one

parameter (clusters with similar forward-scatter, i.e. cell size but different fluores-

cence intensity, i.e. number of chromosomes), these overlapping densities conflate

into one big density distribution with one very wide peak what makes the separation

almost impossible. Therefore, this approach is only suitable if the cluster densities

are not overlapping to a high extend.

flowMeans is designed to find equal-sized, non-spherical clusters. Therefore, this

approach is not suitable for Gaussian distributed clusters that form ellipsoid shapes

and are very diverse in size. By using flowClust, background clusters that are

evenly distributed across the dot plot are not separated from cell clusters. Besides,

the running time of flowClust is relatively long and the number of cell clusters

that are found is too low. We were not able to receive results from the online tool

FLAME as our submitted “jobs” were always in the queue for several days and later

cancelled by the server.

To increase the reliability of finding correct clusters concerning the location and

abundances of cells, we used a model-based approach to determine the parameters

of a mixture of multivariate Gaussian distributions. Our current implementation of

the EM algorithm utilizes a variant of stochastic EM, which initializes the EM with

different starting points for each run. Naturally, this will lead to slightly different

clustering results for each run. Despite the fundamental assumption that cells form

Gaussian distributed clusters it is also possible that different cell cluster distribu-

tions occur (e.g. flat distributions). In general, the EM algorithm is able to estimate

the parameters of each existing distribution and also mixtures of different distribu-

tions. It is possible to fit parameters of different distributions to each cluster and to

select which distribution is describing the cluster more precisely from a statistical

point of view. We focused here on Gaussian distributions and achieved satisfac-

tory results. Allowing different distributions could lead to better results as also cell

cluster would be found that occur as e.g. clusters with essentially flat densities.

Conclusion & Outlook
In this work, we devised a method for the automated clustering of flow cytometry

data derived from microbial communities. There is a big demand for an automated

clustering procedure for the evaluation of cytometric samples derived from biotech-

nology, natural environment as well as agricultural und human health disciplines

e.g. the animal or human microbiomes [57].

Flow cytometric analysis of microbial communities were recently proven to pro-

vide much deeper insight into underlying mechanisms of community assembly in

comparison to amplicon sequencing technologies [8]. Resolving the respective con-

tributions of e.g. deterministic or neutral paradigms to community structure and

functions is dependent on sample density which cannot be provided by any other

method within community observation time. Thus, the automated clustering pro-

cedure derived from microbial communities contributes to an even faster evaluation
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procedure and would close a gap in currently available automated clustering pro-

cedures that were mainly developed for samples with eukaryotic background and

diversification in many fluorescent channels thus providing only few subpopulations

per 2D dot plot.

Our automated procedure is now able to find a high number of previously unknown

distributions in one 2D dot plot which is a huge step forward for fast and nearly

on-line disposal of data to allow interventions for process control or fast diagnostic

decisions. Follow up tools for on-line data evaluation were recently published [7].

As cell clusters can not always be described as Gaussian distributions the next

step will be to allow different types of distributions (e.g. distributions with flat

densities) and to fit the most probable distribution to each cluster. This will allow

flowEMMi to find more clusters being better described by the underlying distribu-

tion. The EM algorithm is a powerful approach to estimate the unknown parameters

of distributions describing clusters of cells with equal or similar optical parameters

that are measured by FCM. With this approach it is possible to overcome the user-

dependent and time-consuming clustering procedure which is still performed in a

manual way.
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(a) BIC curve for subsampled data (every 40th data point) for c ∈
{2 . . . 20}

(b) R dot plot with a random subset of 5 000
data points

(c) Clustering result for c = 13

(d) Clustering result for c = 5 (e) Clustering result for c = 20

Figure 2 Results of flowEMMi after subsampling and calculation of the BIC for the sample shown
in Fig. 1 with separation of cell clusters and background clusters. Background clusters are not
encircled and have a gray colour. (a) Curve of the BIC value shown for c ∈ {2 . . . 20}. (b) R dot
plot with linear axes values from 0 to 65 536 containing only every 40th data point. (c) Clustering
result of flowEMMi for c = 13 calculated as the most appropriate number of clusters with 10 cell
clusters and 3 background clusters. (d) Clustering result of flowEMMi for c = 5 with 4 cell clusters
and 1 background cluster. (e) Clustering result of flowEMMi for c = 20 with 14 cell clusters and 6
background clusters.
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(a) R dot plot with 200 000 data points (b) Clustering result for c = 14

Figure 3 Final result of flowEMMi using prior distribution parameters achieved from the
subsamling procedure and an extended range of c ∈ {13 . . . 16} achieved from the BIC to find rare
cell clusters. (a) R dot plot with linear axes values from 0 to 65 536 containing all data points. (b)
Clustering result of flowEMMi for c = 14 with 12 cell clusters and 2 background clusters.
Background clusters are not encircled and have a gray colour.
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(a) Result of flowEMMi (b) Result of flowFP

(c) Result of SamSPECTRAL (d) Result of flowDensity

(e) Result of flowMeans (f) Result of flowClust

Figure 4 Results of clustering tools. (a) Result of flowEMMi. 12 cell clusters and 2 background
cluster were identified. (b) Result of flowFP for 4 recursion = 16 clusters. (c) Result for
SamSPECTRAL with adjusted parameters and automatically determined number of clusters. (d)
Result of flowDensity with overlapping densities. (e) Result of flowMeans with Voronoi like
cluster shapes. (f) Result of flowClust with automatically determined best number of clusters for
c ∈ {2 . . . 20}.
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(a) Clustering result of flowEMMi
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(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 5 Clustering results for sample InTH 160719 039 using flowEMMi with 2 congruent cell
clusters and 94.1% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 2 cell clusters with 89.9% foreground cells (b). User 2 selected 8
cell clusters with 93.4% foreground cells (c). User 3 selected 2 cell clusters with 91.1% foreground
cells (d). User 4 selected 6 cell clusters with 98.6% foreground cells (e). User 5 selected 4 cell
clusters with 97.7% foreground cells (f). The label of the clusters selected by using FlowJo is in
accordance with the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the additional
file 039.csv.
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(a) Clustering result of flowEMMi

G1

G2

G3

10
0

10
1

10
2

10
3

10
4

Forward-Scatter

10
0

10
1

10
2

10
3

10
4

D
A
P
I-
F
lu
o
re
sc
en
c
e

(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 6 Clustering results for sample InTH 160728 034 using flowEMMi with 2 congruent cell
clusters and 94.1% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 3 cell clusters with 88.8% foreground cells (b). User 2 selected 10
cell clusters with 94% foreground cells (c). User 3 selected 2 cell clusters with 88.7% foreground
cells (d). User 4 selected 9 cell clusters with 99% foreground cells (e). User 5 selected 7 cell
clusters with 100% foreground cells (f). The label of the clusters selected by using FlowJo is in
accordance with the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the additional
file 034.csv.
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(a) Clustering result of flowEMMi
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(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 7 Clustering results for sample InTH 160720 026 using flowEMMi with 7 congruent cell
clusters and 76.4% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 8 cell clusters with 76% foreground cells (b). User 2 selected 14 cell
clusters with 82.8% foreground cells (c). User 3 selected 9 cell clusters with 79.5% foreground
cells (d). User 4 selected 12 cell clusters with 86.9% foreground cells (e). User 5 selected 13 cell
clusters with 95.9% foreground cells (f). The label of the clusters selected by using FlowJo is in
accordance with the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the additional
file 026.csv.
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(a) Clustering result of flowEMMi
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(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 8 Clustering results for sample InTH 160715 019 using flowEMMi with 8 congruent cell
clusters and 64.6% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 6 cell clusters with 60.1% foreground cells (b). User 2 selected 10
cell clusters with 75.9% foreground cells (c). User 3 selected 6 cell clusters with 67.2% foreground
cells (d). User 4 selected 12 cell clusters with 87.7% foreground cells (e). User 5 selected 15 cell
clusters with 90.6% foreground cells (f). The label of the clusters selected by using FlowJo is in
accordance with the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the additional
file 019.csv.
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(a) Clustering result of flowEMMi

G2

G3 G8

G1

G9

G5

G6

10
0

10
1

10
2

10
3

10
4

Forward-Scatter

10
0

10
1

10
2

10
3

10
4

D
A
P
I-
F
lu
o
re
sc
en
c
e

(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 9 Clustering results for sample InTH 160714 033 using flowEMMi with 9 congruent cell
clustersand 74.7% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 7 cell clusters with 61.7% foreground cells (b). User 2 selected 17
cell clusters with 80.1% foreground cells (c). User 3 selected 8 cell clusters with 63.2% foreground
cells (d). User 4 selected 16 cell clusters with 92.7% foreground cells (e). User 5 selected 17 cell
clusters with 90.2% foreground cells (f). The label of the clusters selected by using FlowJo is in
accordance with the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the additional
file 033.csv.
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(a) Clustering result of flowEMMi
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(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 10 Clustering results for sample InTH 160729 027 using flowEMMi with 10 congruent cell
clusters and 66.4% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 6 cell clusters with 69.5% foreground cells (b). User 2 selected 14
cell clusters with 87% foreground cells (c). User 3 selected 6 cell clusters with 69.9% foreground
cells (d). User 4 selected 11 cell clusters with 93.7% foreground cells (e). User 5 selected 12 cell
clusters with 93% foreground cells (f). The label of the clusters selected by using FlowJo is in
accordance with the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the additional
file 027.csv.
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(a) Clustering result of flowEMMi
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(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 11 Clustering results for sample InTH 160715 020 using flowEMMi with 10 congruent cell
clusters and 55.8% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 8 cell clusters with 64.2% foreground cells (b). User 2 selected 13
cell clusters with 78.2% foreground cells (c). User 3 selected 8 cell clusters with 70.5% foreground
cells (d). User 4 selected 13 cell clusters with 86.8% foreground cells (e). User 5 selected 17 cell
clusters with 91.3% foreground cells (f). The label of the clusters selected by using FlowJo is in
accordance with the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the additional
file 020.csv.
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(a) Clustering result of flowEMMi
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(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo

G1

G2

G3

G4

G5
G6

G7
G9

G10

G11

G13
G14

G16

G17
G18

10
0

10
1

10
2

10
3

10
4

Forward-Scatter

10
0

10
1

10
2

10
3

10
4

D
A
P
I-
F
lu
o
re
sc
en
c
e

(f) Clustering result of User 5 using FlowJo

Figure 12 Clustering results for sample InTH 160720 035 using flowEMMi with 11 congruent cell
clusters and 72.6% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 7 cell clusters with 69.5% foreground cells (b). User 2 selected 17
cell clusters with 81.7% foreground cells (c). User 3 selected 7 cell clusters with 71.5% foreground
cells (d). User 4 selected 17 cell clusters with 88.5% foreground cells (e). User 5 selected 15 cell
clusters with 92% foreground cells (f). The label of the clusters selected by using FlowJo is in
accordance with the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the additional
file 035.csv.
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(a) Clustering result of flowEMMi
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(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 13 Clustering results for sample InTH 160712 025 using flowEMMi with 12 congruent cell
clusters and 71.6% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 13 cell clusters with 76.5% foreground cells (b). User 2 selected 15
cell clusters with 82.1% foreground cells (c). User 3 selected 13 cell clusters with 79.1%
foreground cells (d). User 4 selected 16 cell clusters with 90.7% foreground cells (e). User 5
selected 15 cell clusters with 91.6% foreground cells (f). The label of the clusters selected by
using FlowJo is in accordance with the colours of the clusters calculated by flowEMMi. The mean
values and abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the
additional file 025.csv.
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(a) Clustering result of flowEMMi
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(b) Clustering result of User 1 using FlowJo
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(c) Clustering result of User 2 using FlowJo
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(d) Clustering result of User 3 using FlowJo
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(e) Clustering result of User 4 using FlowJo
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(f) Clustering result of User 5 using FlowJo

Figure 14 Clustering results for sample InTH 160713 012 using flowEMMi with 14 congruent cell
clusters and 49.5% foreground cells (a) and manual clustering performed by 5 expert users using
FlowJo (b-f). User 1 selected 13 cell clusters with 49.3% foreground cells (b). User 2 selected 20
cell clusters with 75.4% foreground cells (c). User 3 selected 14 cell clusters with 47.3%
foreground cells (d). User 4 selected 19 cell clusters with 66.3% foreground cells (e). User 5
selected 25 cell clusters with 92% foreground cells (f). The label of the clusters selected by using
FlowJo is in accordance with the colours of the clusters calculated by flowEMMi. The mean values
and abundances of all cell clusters calculated by flowEMMi and FlowJo can be found in the
additional file 012.csv.
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