
Höner zu Siederdissen et al.

RESEARCH

Algebraic Dynamic Programming over General
Data Structures
Christian Höner zu Siederdissen1,2,4*, Sonja J Prohaska3,4 and Peter F Stadler1,2,4,5,6,7,8

Abstract

Background: Dynamic programming algorithms provide exact solutions to many problems in computational
biology, such as sequence alignment, RNA folding, hidden Markov models (HMMs), and scoring of
phylogenetic trees. Structurally analogous algorithms compute optimal solutions, evaluate score distributions,
and perform stochastic sampling. This is explained in the theory of Algebraic Dynamic Programming (ADP) by
a strict separation of state space traversal (usually represented by a context free grammar), scoring (encoded
as an algebra), and choice rule. A key ingredient in this theory is the use of yield parsers that operate on the
ordered input data structure, usually strings or ordered trees. The computation of ensemble properties, such as
a posteriori probabilities of HMMs or partition functions in RNA folding, requires the combination of two
distinct, but intimately related algorithms, known as the inside and the outside recursion. Only the inside
recursions are covered by the classical ADP theory.

Results: The ideas of ADP are generalized to a much wider scope of data structures by relaxing the concept
of parsing. This allows us to formalize the conceptual complementarity of inside and outside variables in a
natural way. We demonstrate that outside recursions are generically derivable from inside decomposition
schemes. In addition to rephrasing the well-known algorithms for HMMs, pairwise sequence alignment, and
RNA folding we show how the TSP and the shortest Hamiltonian path problem can be implemented efficiently
in the extended ADP framework. As a showcase application we investigate the ancient evolution of HOX gene
clusters in terms of shortest Hamiltonian paths.

Conclusions: The generalized ADP framework presented here greatly facilitates the development and
implementation of dynamic programming algorithms for a wide spectrum of applications.

Keywords: formal grammar; dynamic programming; gene duplications

1 Background
Dynamic Programming (DP) over rich index sets pro-
vides solutions of a surprising number of combinatorial
optimization problems. Even for NP-hard problems
such as the Travelling Salesman Problem (TSP) exact
solutions can be obtained for moderate size problems
of practical interest. The corresponding algorithms,
however, are usually specialized and use specific prop-
erties of the problem in an ad hoc manner that does
not generalize particularly well.

Algebraic dynamic programming (ADP) [1] defines
a high-level descriptive domain-specific language for
dynamic programs over sequence data. The ADP
framework allows extremely fast development even of
quite complex algorithms by rigorously separating the

*Correspondence: choener@bioinf.uni-leipzig.de
1Bioinformatics Group, Department of Computer Science, Universität

Leipzig, Härtelstraße 16–18, D-04107 Leipzig, Germany

Full list of author information is available at the end of the article

traversal of the state space (by means of context free
grammars, CFGs), scoring (in terms of suitable alge-
bras), and selection of desired solutions. The use of
CFGs to specify the state space is a particular strength
of ADP since it allows the user to avoid indices and
control structures altogether, thereby bypassing many
of the pitfalls (and bugs) of usual implementations.
Newer dialects of ADP [2, 3] provide implementations
with a running time performance close to what can be
achieved by extensively hand-optimized versions, while
still preserving most of the succinctness and high-level
benefits of the original ADP language.

Sequence data is not the only type of data for
which grammar-like dynamic programs are of inter-
est. Inverse coupled rewrite systems (ICOREs) [4] al-
low the user to develop algorithms over both, sequence
and tree-like data. While no implementation for these
rewrite systems is available yet, they already sim-
plify the initial development of algorithms. This is

Höner zu Siederdissen et al. Page 2 of 12

important in particular for tree-like data. Their non-
sequential nature considerably complicates these al-
gorithms. The grammar underlying the alignment of
ncRNA family models with CMCompare [5], which si-
multaneously recurses over two trees, may serve as
an example for the practical complications. There are
compelling reasons to use DP approaches in particu-
lar when more information than just a single optimal
solution is of interest. DP over sequences and trees
readily allows the enumeration of all optimal solutions,
and it offers generic ways to systematically investigate
suboptimal solutions and to compute the probabilities
of certain sub-solutions. Classified dynamic program-
ming [6], furthermore, enables the simultaneous cal-
culation of solutions with different class features via
the evaluation algebra instead of constructing differ-
ent grammars for each class.

An important research goal in the area of dy-
namic programming algorithms is the development of
a framework that makes it easy to implement com-
plex dynamic programs by combining small, simple,
and reusable components. A first step in this direc-
tion was the introduction of grammar products [7],
which greatly simplifies the specification of algorithms
for sequence alignments and related dynamic program-
ming tasks that take multiple strings as input. Several
straightforward questions, however, still remain unan-
swered.

An important example is the relationship of For-
ward/Backward (in the context of linear grammars)
[8] and Inside/Outside (in the context of CFGs) [9]
algorithms. So far, the two variants need to be devel-
oped and implemented independently of each other.
The close structural relationship of the two types of
recursion has of course been noticed and used explic-
itly to facilitate algorithm design. The idea of “revert-
ing” the inside production rules was used explicitly to
explain backtracing and outside recursions in [10, 11]
for the RNA-RNA interaction problem and in [12] for
RNA folding with pseudoknots, albeit without provid-
ing a general operational framework. In classical ADP
the Inside algorithms are phrased as parsing an input
string w.r.t. a given context free grammar. This is not
possible in general for the Outside recursion because
these operate, conceptually, on the complement of a
substring. In some situations it is possible to rescue
the ADP-style approach. For RNA folding, for exam-
ple, Janssen [13] proposed to concatenate the suffix
and the prefix in this order. The Outside recursion is
then rephrased as a CFG on this modified string.

A second unsolved issue is that not all dynamic pro-
gramming algorithms can be translated into the ADP
framework in a straightforward manner. A classical ex-
ample is the Travelling Salesman Problem (TSP). It is

easily stated as follows: given a set X of cities and a
matrix d : X × X → R+ of (not necessarily symmet-
ric) distances between them, one looks for the tour
(permutation) π on X that minimizes the tour length

f(π) := dπ(n),π(1)+
∑n−1
i=1 dπ(i),π(i+1). W.l.o.g., we may

set X = {1, . . . , n} and anchor the starting point of a
tour at π(1) = 1. The well-known (exponential-time)
DP solution for the TSP [14, 15] operates on “sets with
an interface” [A, i] representing the set of all tours
starting in 1 ∈ A, then visiting all other cities in A
exactly once and ending in i ∈ A. The length of the
shortest path of this type is denoted by f([A, i]). For
an optimal tour we have f([X, i]) + f(〈i, 1〉) → min,
where f(〈i, 1〉) = d1,i is the length of the edge from i
to 1. The values f([A, i]) satisfy the recursions

f([A, i]) = min
j∈A

f([A \ {i}, j]) + f(〈j, i〉) (1)

since the shortest path through A to i must consist of
a shortest path through A ending in some j ∈ A and
a final step from j to i.

A classical ADP formulation is impossible because
the set A does not admit a string representation so
that its subsets could be generated by a fixed set of
productions. To split off a particular element {i} from
A, for example, one requires a specific production rule
of the form A → (A \ {i}) ∪ {i}. This cannot be cap-
tured by a fixed CFG since the number of productions
grows with the size of A.

Instead of relaxing the constraints on the number
of productions we argue here that the solution to this
conundrum can be resolved by a redefinition of the
concept of parsing so that we can meaningfully write
A → Ax for the decomposition of a (nonempty) set
into a subset with cardinality one less and the excluded
single element. This restores one of the main advan-
tages of ADP, namely the possibility to describe the
state space traversal without explicit representation of
indices. At the same time we will see below that the
same formalism also yields a completely mechanical
way to construct Outside recursions from the Inside
algorithm. To this end we first consider the concep-
tually simple case of 1-dimensional and 2-dimensional
linear grammars on strings using HMMs and pairwise
sequence alignments as example. We then proceed to
RNA folding as an example of a non-trivial CFG. The
final step is to introduce an ADP-style formalism for
non-trivial set-like data structures. Up to this point
we keep our discussion informal and ignore several
technical details. In section 3 we will then follow up
with a much more abstract and precise account. In
section 4 we finally consider the probabilistic version
of the shortest Hamiltonian path problem in the con-
text of the early evolution of HOX gene clusters as a
real-life application of our framework.

Höner zu Siederdissen et al. Page 3 of 12

2 Case Studies
2.1 HMMs and the Forward/Backward Algorithms
A simple Hidden Markov Model (HMM) for detect-
ing CpG islands in genomic DNA can specified as
follows: (1) Each nucleotide position is contained ei-
ther in a CpG island (state “+”) or not (state “−”).
(2) The probability that a nucleotide p follows q is
given as aσpq and differs between the two states σ ∈
{+,−}. Furthermore we require a probability to switch
from + to − of q± and q∓, respectively. This yields
transition probabilities t++

i,i−1 = (1 − q±)a+xi,xi−1
and

t−−i,i−1 = (1 − q∓)a−xi,xi−1
for the cases where the state

remains unchanged + or − and t+−i,i−1 = q∓a−xi,xi−1
and

t−+i,i−1 = q±a+xi,xi−1
for the two possible state changes.

Note that this formulation is much simpler than the
usual HMM formalism since the emission probabilities
are trivial here.

f+[i] = f+[i− 1]t++
i,i−1 + f−[i− 1]t+−i,i−1

f−[i] = f−[i− 1]t−−i,i−1 + f+[i− 1]t−+i,i−1
(2)

The corresponding backward probabilities are

b+[i] = b+[i+ 1]t++
i,i+1 + b−[i+ 1]t+−i,i+1

b−[i] = b−[i+ 1]t−−i,i+1 + b+[i+ 1]t−+i,i+1

(3)

This allows to compute P(i ∈ +) = f+[i]b+[i] and
P(i ∈ −) = f−[i]b−[i].

In an ADP-style framework the forward recursion
corresponds to the grammar with the productions

S → P
∣∣ M

P → Pc
∣∣ Mc

∣∣ ε

M → Pc
∣∣ Mc

∣∣ ε

(4)

Apart from the formal start symbol S, it describes
the two states as P and M and the possible tran-
sitions. The latter are both associated with prefixes
[1..i] of the input strings up to some position i. The
non-terminal P signifies that i has state +, while non-
terminal M corresponds to the − state. The scoring of
the productions P → Pc, P → Mc, etc., is relegated
to a scoring algebra that encodes the multiplicativity
of probabilities. Translated to recursion form, with in-
dices 0 < i ≤ n referring to positions in the input
string and n denoting the length of the input, the for-
ward recursions take on their usual form, see e.g. [16,
p. 51ff]:

Sn = Pn +Mn

Pi = Pi−1 × cP→Pci +Mi−1 × cP→Mc
i + 0

Mi = Pi−1 × cM→Pci +Mi−1 × cM→Mc
i + 0

P0 = 1 M0 = 1

(5)

where cP→Pci := (1 − q±)a+xi,xi−1
, etc., are the tab-

ulated parameters of the HMM. The initialization
P0 = M0 = 1 follows as the conditional probability of
ending in the ε state after having read all input. Note
that the strucuture of the recursion (5) is completely
determined by the productions in equ.(4).

The backward recursion corresponds to a traversal
of the input by means of suffixes. To each forward pre-
fix [1..i] we have a matching suffix [i..n], where n is
the length of the input. This overlap of correspond-
ing prefix and suffix is just one indication that we
might want to modify how we interpret the grammar
(4). The fact that the scoring function explicitly refers
to transitions, i.e., pairs of consecutive positions gives
another hint. In this alternative picture we think of
P and M as prefixes in which the last position takes
on the role of a boundary ∂M and ∂P . Now we can
think of the corresponding suffixes as the complements
w.r.t. the input, i.e., to “forward objects” P and M we
associate “backward objects” P ∗ and M∗ so that, in
terms of the index sets to which they refer, we have
P∪P ∗ = S = {1 . . . n},M∪M∗ = S, P∩P ∗ = ∂P , and
M ∩M∗ = ∂M . Correspondingly, the terminals can be
thought of as pairs of consecutive positions. This pro-
vides us with a mechanical way of scoring c as c±i in the
forward recursion and as c±i+1 in the backward recur-
sion, since the terminal c defined for positions (i−1, i)
overlaps with the boundary of the forward objects P
and M at i − 1, while the one defined on (i, i + 1)
overlaps on i + 1 with the boundary of the backward
objects P ∗ and M∗.

Now, the corresponding backward grammar is, and
should be compared closely to its progenitor (equ. 4):

ε∗ → P ∗
∣∣ M∗

P ∗ → P ∗c
∣∣ M∗c

∣∣ S∗

M∗ → P ∗c
∣∣ M∗c

∣∣ S∗
(6)

At first glance this notation looks awkward. One might
have expected something like P ∗ → cP ∗. However, we
will see below that for general CFGs the backward or
outside objects P ∗ refer to the index set not covered
by P . The notation P ∗c can be interpreted as the in-
sertion of c at the right hand end of the “hole”, i.e.,
as a left extension of the suffix. For completeness we
translate eq.(6) into the corresponding recursions

ε∗0 = P ∗0 +M∗0 (outside final result)

P ∗i = P ∗i+1 × cP
∗→P∗c

i+1 +M∗i+1 × cP
∗→M∗c

i+1 + 0

M∗i = P ∗i+1 × cM
∗→P∗c

i+1 +M∗i+1 × cM
∗→M∗c

i+1 + 0

P ∗n = 1 M∗n = 1

(7)

The a posteriori probability that sequence position
i is in the + state is given by PiP

∗
i . In our frame-

Höner zu Siederdissen et al. Page 4 of 12

work, we obtain the complete list of these proabilities
by using the probability scoring algebra and the formal
production rule S → P ∗P or, equivalently, S → PP ∗.
Writing S → P ∗P as a production rule from the start
symbol ties P and P ∗ together to be complementary,
rather than independent non-terminals following the
forward and backward grammar. Note that symboli-
cally S → P ∗P is no longer a linear production. It
becomes useful, however, in our formalism to use the
notation of production rules to specify any kind of de-
composition of a data object. In this setting S → P ∗P
does makes sense: it defines the list of all complemen-
tary pairs of inside and outside objects, i.e., it serves
as implicit specification of the outside object P ∗ to P .
We will formally define this construct in Sect. 3.

2.2 Prefix and Suffix Style Pairwise Sequence
Alignments

An analogous construction pertains to multiple se-
quence alignment. The only difference there is that
now we operate simultaneously on multiple input
tapes. For simplicity of exposition we consider only
the pairwise alignment problem. Let us start with the
well-known Needleman-Wunsch (NW) algorithm [17].
Starting from an empty alignment, we can think of it
as extending an alignment A by either a (mis)match,
an insertion, or a deletion. In grammar form this can
be written as

S → A A→ A(uv)
∣∣ A(u−)

∣∣ A(−v)
∣∣ (εε) (8)

In contrast to the HMM example above, it is conve-
nient here to interpret the string pairs A with an empty
boundary: if A refers to the pair [1..i, 1..j] then A∗

refers to [i + 1..n, j + 1..m] where n and m, resp. are
the lengths of the input strings. The formal outside
derivation, in terms of suffixes, of the NW algorithm
is:

(εε)
∗ → A∗

A∗ → A∗(uv)
∣∣ A∗(u−)

∣∣ A∗(−v)
∣∣ S∗ (9)

As for the HMM we think of A∗ as a representation
of the hole that is left over by A, and we read A∗(u−)
as “fill (u−) into the hole A∗ at its r.h.s. end. Clearly
S → AA∗ and S → A∗A refer to the complete global
alignments with all possible “splitting constraints”.

The outside productions (9) look like the suffix ver-
sion of the NW algorithm. Writing the decomposition
with full index information, however, shows that there
is a suble difference: Aij 7→ Ai−1j−1

(
i
j

)
transforms to

A∗ij 7→ A∗i+1,j+1

(
i+1
j+1

)
, etc. This highlights the inter-

pretation that A∗ refers to the “hole” extending to the
right from the positions after i and j, i.e., not including

i and j itself. While this make little formal difference
for the NW algorithm, it does have an important im-
pact in the more complex case of Gotoh’s algorithm
for affine gap costs [18].

The different scoring of gap “opening” and “exten-
sion” implies that the gap-status at the end of a par-
tial alignment must be known. To this end the CFG
uses three non-terminals M , D, and I depending on
whether the r.h.s. end of the alignment is a match
state, a gap in the second sequence, or a gap in the
first sequence. We ignore the issues of start (S) and
stop ((εε)) symbols for the moment and return to them
in Sec. 3 below in a more systematic manner. The pro-
ductions of the “body” of the recursions are of the
form

S → M
∣∣ D

∣∣ I

M → M(uv)
∣∣ D(uv)

∣∣ I(uv)
∣∣ (εε)

D → M(u−)
∣∣ D(u.)

∣∣ I(u−)
∣∣ (εε)

I → M(−v)
∣∣ D(−v)

∣∣ I(.v)
∣∣ (εε)

(10)

where u and v denote terminal symbols. ’−’ corre-
sponds to gap opening, while ’.’ denotes the (differ-
ently scored) gap extension.

The interpretation of the non-terminals M , D, and
I is determined by the last column of the prefix align-
ment: it ends in a (mis)match, a deletion, or an inser-
tion, respectively. In contrast to the HMM example of
the previous section we do not score transitions here.
Thus we interpret the non-terminals as boundary-free.
Hence M∗ becomes a suffix object complementing
a prefix alignment that ends in a (mis)match. Note
that this does not mean that M∗ itself ends in a
(mis)match. Because M , and thus M∗ are boundary-
free, the corresponding alignments do not overlap. As
a consequence, their scores can be added. This prop-
erty is required for the evaluation algebras to behave
properly.

Transforming the linear grammar eq.(10) into its
outside recursions yields

(εε)
∗ → M∗

∣∣ D∗
∣∣ I∗

M∗ → M∗(uv)
∣∣ D∗(u−)

∣∣ I∗(−v)
∣∣ S∗

D∗ → M∗(uv)
∣∣ D∗(u.) ∣∣ I∗(−v)

∣∣ S∗
I∗ → M∗(uv)

∣∣ D∗(u−)
∣∣ I∗(.v)

∣∣ S∗
(11)

A first glance, this grammar looks odd. It is not the
grammar for the suffix-version of Gotoh’s algorithm.
Instead, it refers to a rather unusual way of solving
the affine gap cost problem. Here the distinction is not
made between opening or extending a gap, but rather
between closing or extending it. The nonterminals on

Höner zu Siederdissen et al. Page 5 of 12

the r.h.s. of the rule thus refer to the type of align-
ment that is reached after extending the one on the
l.h.s. of the rule by the terminal symbol appearing on
the r.h.s. Since our forward recursion (10) is set up to
separately score gap opening, i.e., the left-most gapped
position in the alignment, the same must be true for
the backward recursion. Since it proceeds from right
to left on the input string, we naturally arrive at the
algorithmic variant that scores gap closing separately.
The corresponding non-terminals therefore depend on
how the alignment is continued in the subsequent step.

On a more technical note, the conversion of (10) to
(11) does not break the signature type isomorphism
between inside and outside variant. Where previously
the rule D → I(u−) makes use of an attribute function
with type Γ ×

(
Char
−

)
→ Γ for evaluation, this type

now corresponds to the rule I∗ → D∗(u−). Here Γ is
the type of the evaluated parse, e.g. a probability for
SCFGs or an energy or a partition function for RNA
folding.

One obtains the probability of matching each pair(
i
j

)
via S → MM∗ ≡ M∗M . Each Mij indicates an

alignment ending in a match with indices
(
i
j

)
, while

M∗ij yields alignments where the matching characters
at

(
i
j

)
“have just been transitioned from”.

2.3 Inside and Outside: RNA folding
State-of-the-art RNA folding programs (as imple-
mented e.g. in the ViennaRNA package [19]) incorpo-
rate the nearest-neighbour model. For the purpose of a
more compact presentation, we restrict ourselves here
to the much simpler model

ε

(12)

The full model [20] amounts to a more complicated
decomposition of secondary structure enclosed by a
base pair (2nd decomposition). In a more conventional,
but mnemonically less pleasing form the productions
in equ.(12) read

S → U U → cU
∣∣ BU ∣∣ ε B → cUc′ (13)

This is a conventional CFG acting on the input string,
here an RNA sequence. As usual we write c . . . c′ to
mean all 6 combinations of canonical base pairs gc,
cg, au, ua, gu, and ug. In terms of recursions with
explicit indices, its interpretation is

S1,N 7→ U1,N
Uij 7→ εi>j empty parse
Uij 7→ ciUi+1,j Uij 7→ BikUk+1,j

Bij 7→ ciUi+1,j−1c
′
j

(14)

OutsideInside

C

t

D

E

A

C

t

E

D

A*

B

B*

S S

A→ BCDEt B∗ → A∗CDEt

Figure 1 Conversion of Inside productions into
decompositions of the corresponding Outside objects. A
production rule A → . . . describes in which ways A can be
partitioned, here into 5 parts B, C, D, E, and t. The
corresponding outside objects A∗ and B∗ are the
complements of A and B w.r.t. to input, represented by the
box S. A rule B∗ → . . . describes the decomposition of B∗,
i.e., S \B. Borrowing from A → BCDEt we see that B∗

consists of complement A∗ of A as well as the pars of A with
the exception of B itself.

The indices here explicitly designate a substring of the
input to which a particular non-terminal or terminal
symbol refers.

The non-terminal S, which refers to unconstrained
secondary structures, has an empty boundary. In con-
trast, it is natural to think about Bij as having the
closing base pair 〈i, j〉 as its boundary. The reason
is that the standard energy model for RNAs in gen-
eral evaluates the “loop” enclosed by 〈i, j〉 rather than
the pair itself. This is also true for corresponding out-
side objects, i.e., 〈i, j〉 naturally contributes both in-
side and outside “loops” that it delimits. In the natural
way to define outside objects this is different for S and
B. The complement of Sij is S∗i−1,j+1 and refers to sec-
ondary structures on [1..i− 1]∪ [j + 1..n]. In contrast,
the complement of Bij is B∗ij , referring to secondary
structures on the union [1..i]∪ [j..n]. Thus S ∩S∗ = ∅,
while B ∩B∗ is the common enclosing base pair.

In order to understand how the inside grammar (14)
gives rise to recursions for the outside variables S∗ and
B∗ we first consider the conceptual picture illustrated
in Fig. 1. Since a production corresponds to a decom-
position of an object in smaller constituents, we may
pick one of these parts and ask for a decomposition of
its complement. The complement of course is formed
with respect to some “ground set”, in our case the
complete input.

This idea is easily made precise for an arbitrary CFG.
Consider a derivation of the form A→ αBβ, where B
is a non-terminal and α, β are strings of terminals and
non-terminals. Here A is decomposed into B as well as
the rest α∪β. Looking at the complements, therefore,
B∗ consists of A∗ and the rest α ∪ β. Since A and B
are intervals in a CFG setting, their complements are
disjoint unions of a prefix and a suffix of the input.

Höner zu Siederdissen et al. Page 6 of 12

Thus A→ αBβ transforms to

A→ αBβ B∗ → αA∗β (15)

where the string of forward (non)terminals α is filled
from the left into the hole of A∗ and β is filled in
from the right. This is always well-defined because the
outside rules always contain exactly one outside non-
terminal on both the l.h.s. and the r.h.s. of the derived
rule. For an inside production A → γ we obtain one
outside production for every non-terminal B ∈ γ. Thus
we have to split γ = αBβ for all non-terminals B ∈ γ.
This can easily be achieved in a completely mechanical
way. For the RNA example this yields

ε∗ → U∗

U∗ → cU∗
∣∣ BU∗ ∣∣ cB∗c′ ∣∣ S∗

B∗ → U∗U

(16)

In diagrammatic form this can be written in the fol-
lowing way

(17)

It is instructive to translate this outside grammar-style
into a more conventional recursive form that explicitly
exposes the indices:

U∗ij 7→ ci−1U
∗
i−1,j

U∗ij 7→ ci−1B
∗
i−1,j+1c

′
j+1

U∗ij 7→ Bk,i−1U
∗
k,j k < i

B∗ij 7→ U∗i,kUj+1,k k > j

U∗ij 7→ εi=1,j=n

(18)

We can now derive McCaskill’s algorithm [21] for
computing the base pairing probabilities by (1) writ-
ing down the inside grammar (see e.g. [22] for several
variants), (2) specifying the evaluation algebra for the
partition function (see sect. 3), (3) generating the out-
side recursions, and (4) producing the list S → BB∗.

2.4 Shortest Hamiltonian Paths
We now leave the realm of classical ADP behind
and consider dynamic programming algorithms on un-
ordered data structures. This most clearly requires us
to rethink what we mean by a “grammar” and by
“parsing”. Since shortest Hamiltonian paths play a key
role in the show-case example in section 4 we introduce
them here as an illustrative example.

Shortest Hamiltonian Path (SHP). Given a graph
G with vertex set V and edge set E and a dissimilarity
matrix d : E → R+ the task is to find a path π in V
that runs through every vertex and minimizes the total
length `(π) =

∑n−1
i=1 dπ(i)π(i+1).

SHP is a well known NP-complete combinatorial op-
timization problem. It can be solved exactly by a sim-
ple DP algorithm [14, 15], which of course in gen-
eral has exponential runtime. Denote by [i, A, j] with
i, j ∈ A ⊆ V the set of all Hamiltonian paths through
a subset A that have i and j as its endpoints. For ev-
ery k ∈ A \ {i, j} we can decompose [i, A, j] into the
edge 〈k, j〉 and the set [i, A, k] of shorter Hamiltonian
paths. We can write this decomposition in the form

A→ Av (19)

in complete analogy to a linear grammar. The point of
this section is that we can make this analogy precise
and useful.

Let us first consider this rule for an arbitrary set.
Then A → Av tells us to split off a single element
(atom) from A. On string data structures there is es-
sentially only a single way of doing this, namely to
remove a single-character suffix. Removal of a prefix
would be encoded by A → vA, i.e. a distinct produc-
tion. On sets, we now have |A| possibilities, i.e., we ob-
tain a list of possible decompositions. Since the under-
lying data structure has no intrinsic order, the produc-
tions A → Av and A → vA are of course equivalent.
This is not different from CFGs, in fact: A production
of the form A → BC returns |A| + 1 partitionings of
A into a prefix B and a suffix C. Of course A → BC
also makes perfect sense for sets: B and C now form
the bipartitions of A, i.e., there are 2|A| alternative de-
compositions. The only difference between strings and
sets thus is the number of alternative parses.

In the SHP example there is a further complication:
we have to keep track of the end points i and j. Instead
of regular sets, we thus have an additional “punctua-
tion” structure that defines a start and end point. The
parsing rule A→ Av now has to know that (i) the end
point has to be split off, and in doing so, (ii) a new end-
point distinct from the startpoint has to be determined
so that we obtain again a properly punctuated set. Fur-
thermore it becomes the parser’s job to know that (iii)
the terminal v is the connection between new and old
endpoint, rather than just a split-off vertex. We note
in passing that simply re-interpreting the punctuated
sets A as connected components so that neither end
point is a cut vertex of the input graph may increase
practical efficiency since it prunes early those subsets
through which no path connecting the end points can
be constructed. Whether we want to think of the start-

Höner zu Siederdissen et al. Page 7 of 12

and endpoints as distinct features, or whether either
one can be used to decompose the set, is a matter of
modelling and defines two distinct data types.

Formally, furthermore, we see that there is a second
type of decomposition operations that seems useful in
general ADP. We may simply write

V → A (20)

and assume that our machinery knows that V is an
unstructured set, while A is a set with start and end-
point. The trivial-looking rule therefore provides a list
of |V |(|V | − 1) or |V |(|V | − 1)/2 punctuated sets, de-
pending on whether start and end are distinguished or
not.

Of course we can immediately construct A∗ as a com-
plementary punctuated set with the same endpoint,
i.e., so that [i, A, j][j, A∗, k] overlap in the common
point j. We then have

A∗ → A∗v (21)

as the corresponding grammar for the outside objects.

For the Hamiltonian paths through a particular ad-
jacency (terminal) v we can now write V → AvA∗,
i.e., this is a top-level decomposition of the start sym-
bol, i.e., acting on the input string. We simply have
to use as scoring algebra the multiplication of parti-
tion functions from A and A∗ (as S \ A) and fix the
Boltzmann-weights Z(〈i, j〉) = exp(−αdij) for the ter-
minals. This computes the a posteriori probability of
observing an adjacency i ∼ j in the path with fixed
endpoints p and q, i.e.,

P (i ∼ j|p, q) =
1

Z(Spq)∑
A⊂S

Z([p,A, i])Z(〈i, j〉)Z([j, S \A, q]) .
(22)

in the index-based notation. Similarly, P (ends=p, q) =
Z(Spq)/Z(S) provides us with the probabilities that
the path ends in p and q and P (end=p) =

∑
q P (ends =

p, q) measures how frequently we expect p to be an
end point of a path. We make use here of the dis-
tinction between the start symbol S, which refers to
a set without boundary, and Spq, a set [p,A, q] with
two boundary points p and q defining the end points
of the paths running through it. Thus S → Spq with
“sum” as choice function and the identity attribute
function (attribute functions of an algebra evaluate in-
dividual parses) yields Z(S), summing over all (p, q).
On the other hand, S → Spq with the identity choice
function and attribute function λz. z

Z(S) (where λz.B

denotes an anonymous function with body B expect-
ing z as its single argument) returns a list of all (p, q)
start/end points, together with the probabilities that
these points are start and end point. To obtain the
end probabilities in our framework we need an addi-
tional type of non-terminals, say Sp, that have only a
single point as boundary, i.e., it refers to sets of the
form [p,A]. The production S → Sp with the identity
choice and attribute λz. z

Z(S) then yields the desired

end probabilities. Sp → Spq folds over all Sip and Spi
for all i, as we now do not distinguish between a ‘start-
ing’ and ‘ending’ point in a path for Sp.

3 The formal framework
The key ingredient in our approach is to generalize
grammars to decomposition schemes of a wide range of
data models by redefining what exactly parsers do. Let
us start with making explicit how this works in classi-
cal ADP, i.e., for (context free) grammars on strings:
1 Each (non)terminal corresponds to a substring.
2 Each terminal symbol matches a single character

of the input string.
3 Each production defines a (list of) partitions.

More precisely, the substrings corresponding to
the r.h.s. of the production partition the substring
corresponding to the single non-terminal on its
l.h.s.

4 The partition is order preserving, i.e., the se-
quence of symbols on the r.h.s. matches the or-
der of the corresponding substrings on the input
string.

We have seen that it may be convenient already in the
realm of strings to give up some of these requirements
e.g. to treat problems in which terminals are naturally
interpreted as transitions between adjacent positions
as in the HMM case.

To formalize this we introduce objects with bound-
aries and allow that objects on the r.h.s. of a product
overlap in their boundaries in a certain way. To this
end we define for each object A its boundary ∂A and
its interior int(A) := A \ ∂A. An object together with
its boundary is denoted by [A, ∂A]. We also allow ter-
minals to match more than an atomic constituent of
the input data structure. An example are the pairs of
adjacent characters in the HMM case and the edges of
input graphs in the Hamiltonian paths. The produc-
tions take on the form of decomposition rules

[A, ∂A]→
⋃
i

[Ai, ∂Ai] (23)

for which we require the following properties:
(C1)

⋃
iAi = A, i.e., the decomposition products of A

form a covering of A.

Höner zu Siederdissen et al. Page 8 of 12

(C2) intAi ∩ intAj 6= ∅ implies i = j, i.e., the interiors
of the parts are disjoint.

(C3) intAi ⊆ intA, i.e., the interiors behave like iso-
tonic functions.

Note that these axioms recover the partition-style
parsing if all data objects have empty boundaries. In
this case (C3) follows from (C2). Whether we treat
the

⋃
i[Ai, ∂Ai] as an ordered list or as a multiset (or

as something inbetween) depends on the intrinsic in-
ternal order structure of A. Here we have encountered
only total orders (on strings) and anti-chains (for sets).
Non-trivial partial orders however may become impor-
tant when dealing with tree structures.

The parsers can infer much of the necessary index
handling from considering meta-rules for handling ad-
jacent boundaries. For instance, it will be useful in
many cases to declare that boundaries of adjacent ob-
jects can overlap only if they coincide. In the RNA
example enclosing base pairs appear as object bound-
aries. Semantically, it make no sense to allow over-
lap of base pairs at one end but not at the other. In
other cases, however, it is useful to require only that
∂Ai ⊆ Aj or vice versa. This is the case in the HMM
and SHP example, where we might want to interpret
the terminals as transitions and edges as having empty
interior and thus consisting of boundary only. DP al-
gorithms where the index arithmetic in the decompo-
sitions is even more complex for instance appear in
RNAwolf [23] and in the context of the coloring prob-
lems associated with RNA design in [24].

As we use complementarity w.r.t. the input to define
the outside objects we have

S → [A, ∂A][A∗, ∂A∗] . (24)

since the start symbol S refers to the unprocessed,
complete input. By construction, therefore, ∂A = ∂A∗,
and A and A∗ overlap at the boundary. The same com-
plementarity is the basis for deriving the outside recur-
sion in a well-defined manner from the inside recursion
using equ.(15) in the ordered case or even simpler

A→ αBγ B∗ → αA∗γ (25)

where γ is a set of terminals and non-terminals. By
construction there is exactly one syntactic outside vari-
able on the r.h.s. of an outside production rule. All
other symbols on the r.h.s. are either terminal symbols
or inside symbols. From the perspective of the outside
variables, they behave as “syntactic terminals”, i.e.,
in a combined inside/outside grammar none of their
derivations ever reaches an outside variable. As an
immediate consequence we conclude that the outside
grammar is bi-linear (and even linear in the unordered

case) in its outside syntactic variables. Given a descrip-
tion of parsing we can now use the conventional ADP
framework.

Start symbols, stop symbols, and normalized grammars

The start symbol S and stop symbol ε are complemen-
tary in a natural manner: S refers to the complete, un-
processed input, while ε recognizes that the input has
been used up and there is nothing left to parse. Thus
S ∼= ε∗ and ε ∼= S∗. More precisely, each inside rule
of the form S → A has a corresponding outside rule
A∗ → σ∗, and each inside rule A→ ε yields translates
into the outside rule E∗ → A∗. We say that a grammar
is normalized if

(1) Every production rule S → α with the start sym-
bol S on the l.h.s. has a single non-terminal (or
syntactic variable) on the r.h.s.

(2) All production rules with only terminals on the
r.h.s. have just a single ε (and no other symbol)
on the r.h.s.

While it is not strictly necessary to work with normal-
ized grammars, they are practically convenient because
normalization guarantees that start and stop rules that
isomorphic evaluation function types in their respec-
tive inside and outside version. It is easy to see that
if G is normalized, then its outside variant G∗ is also
normalized.

As an illustration we complete here the outside recur-
sions for Gotoh’s alignment algorithm. Recalling eqns.
(10) and (11) we first have to explain the rules for the
outside start symbol. From the inside rules M → ε,
D → ε, andD → ε we obtain the expected productions
E∗ → M∗

∣∣ D∗ ∣∣ I∗. Furthermore, S → M
∣∣ D ∣∣ I

yields the termination rules M∗ → σ∗, D∗ → σ∗, and
I∗ → σ∗. The final outside variant of Gotohs algorithm
now reads:

E∗ → M∗
∣∣ D∗

∣∣ I∗

M∗ → M∗(uv)
∣∣ D∗(u−)

∣∣ I∗(−v)
∣∣ (σσ)

∗

D∗ → M∗(uv)
∣∣ D∗(u.) ∣∣ I∗(−v)

∣∣ (σσ)
∗

I∗ → M∗(uv)
∣∣ D∗(u−)

∣∣ I∗(.v)
∣∣ (σσ)

∗

(26)

In the context of multi-dimensional grammars for
alignments we have to deal with gap symbols referring
to an empty input on one or more input tapes. Al-
though gaps are superficially similar to stop symbols
they only appear in the context of actually parsing an
input symbol, albeit on another tape, they are han-
dled just like any other character-parsing terminal. In
particular they do not give rise to a start symbol in
the outside grammar.

Höner zu Siederdissen et al. Page 9 of 12

Combining Inside and Outside variables: a posteriori
probabilities
ADP grammars come with a signature that describes
the types of the attribute functions attached to each
production rule. One of the fringe benefits of construct-
ing the outside grammar automatically according to
equ.(15) or equ.(25) is that the inside and outside
grammars are guaranteed to be isomorphic with re-
spect to their signature. This, in turn, simplifies re-use
of evaluation algebras between inside and outside.

The formal production S → P ∗P ≡ PP ∗, as an in-
side rule, states that parses p∗ should be combined
with corresponding parses p. This is, however not a
normal context-free rule. If P and its outside comple-
ment P ∗ come from a linear grammar with a set-based
index type, then the intuition is correct. For a linear
grammar on a string index type, this looks intuitively
correct, but the underlying index type does not admit
a context-free grammar at all as linear grammars have
a fixed left or right end point for each sub-parse. This
issue can be resolved by observing that S → PP ∗ in
an inside context translates into generating all possi-
bilities of splitting (the index representation of) the
complete input into an inside and an outside part. For
linear string grammars there are the O(n) ways to split
0 ≤ k ≤ n at k; for string CFGs there are O(n2) ways
to split 0 ≤ k ≤ l ≤ n at (k, l), and linear set gram-
mars yield O(2n) different split points of a set with n
bit. For multi-tape grammars, the behaviour follows in
an analog fashion.

The production S → PP ∗ requires an attribute func-
tion evaluating each parse (p, p∗) ∈ P, P ∗, and a choice
function. The evaluation algebra for probabilities or
partition functions (which are essentially unnormal-
ized probabilities) comprises multiplication for terms
appearing in decompositions and addition for alterna-
tive productions from the same non-terminal. For the
terminals, score values are tabulated as parameters.
In the case of RNA folding, these are the Boltzmann
factors exp(−E(t)/RT) of the energies E(t) associated
with the terminal t. For the RNA toy model of Sec. 2.3
we have E(t) = 1 for a base pair terminal and E(t) = 0
for an unpaired terminal. In the more realistic setting,
the loop energies of the Turner model are used. The
practical evaluation will typically be along the lines
of λpq.p×qZ to yield the probability, where the normal-
ization constant Z is obtained by evaluating the start
nonterminal.

4 Application: Shortest Hamiltonian Paths
and Gene Cluster Histories

Local duplication of DNA segments via unequal
crossover is the most plausible mechanism for the

emergence and expansion of local clusters of evolu-
tionary related genes. Although there are polynomial-
time algorithms to reconstruct duplication trees from
pairwise evolutionary distance data [25] this approach
often fails to resolve the ancient history of gene clus-
ters. The reason is the limited amount of phylogenetic
information in a single gene. The situation is often
aggravated by the extreme time scales leading to a de-
cay of the phylogenetic signal so that only a few, very
well-conserved sequence domains can be compared. A
large number of trees then fits the data almost equally
well. A meaningful analysis of the phylogeny thus must
resort to some form of summary information that is
less detailed than a fully resolved duplication tree. In
the absence of genome rearrangements, and if dupli-
cation events are restricted to copying single genes to
adjacent positions, we expect genetic distance to vary
monotonically with genomic distance, i.e., we expect
– at least approximately – to have dik ≥ max(dij , djk)
whenever gene j lies between i and k on the genome.
The same is true if gene duplications arise by unequal
crossover and subsequent divergence rates are compa-
rable. This so-called Robinson property ensures that
a shortest Hamiltonian path through the genetic dis-
tance matrix conforms to the linear arrangement of the
genes on the genome [26]. A mathematically more pre-
cise exposition of the role of short Hamiltonian paths
in clusters of paralogous genes can be found in a forth-
coming manuscript [27].

The same high noise level that suggests to avoid
duplication trees should also make us distrust the
shortest path. More robust results can be expected
by considering the information on the ensemble of all
Hamiltonian paths. We therefore compute the proba-
bilities P (i ∼ j) of the individual adjacencies assum-
ing a Boltzmann weighting p(π) ∝ exp(−`(π)/RT) of
the Hamiltonian paths π. The parameter T is a fic-
titious temperature governing the relative importance
of short versus long paths π. For T → 0 we focus on
the (co)optimal paths only, while T → ∞ leads to a
uniform distribution of adjacencies. The normalization
constant is conveniently set to R = (n− 1)d, where d
is the average of the genetic distance between genes.
The path length `(π) plays the role of the energy in the
partition function of RNA secondary structures and of
the dissimilarity score in probabilistic alignment algo-
rithms. As we have seen in sect. 2.4, the The ADP-style
framework provides us with an easy and efficient way
to compute the probabilites P (i ∼ j) of adjacencies
along short Hamiltonian paths and the probabilities
P (end = i) that gene i is the endpoint of a short path.
In intact clusters we expect that the ends of genomic
cluster also appear as the most probable ends of the
Hamiltonian paths. High probabilities in the interior,
by contrast, are a good indicator of rearrangments.

Höner zu Siederdissen et al. Page 10 of 12

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 4 5 6 7 9 1
0

1
1

1
3

p
(e

n
d

)

p
(e

n
d

)

p
(e

n
d

)

p
(e

n
d

)

T = 0.033 T = 0.1 T = 0.33 T = 1.0

probability of adjacency 0.01 0.05 0.1 0.2 0.3 0.40 0.5

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 c b a 8 7 6 59* 1 2 3 c b a 8 7 6 59*

p
(e

n
d

)

p
(e

n
d

)

p
(e

n
d

)

p
(e

n
d

)
Blossum Hamming Blossum Hamming

Latimeria menadoensis Strongylocentrotus purpuratus

Figure 2 Analysis of two Hox gene cluster in terms of shortest Hamiltonian paths w.r.t. genetic distance. Small diagrams indicate
the genomic order and reading direction of the genes (black triangles). The small histograms show the probability that a gene is
endpoint of a Hamiltonian path, the square panels below display the posterior probabilities of adjacencies of Hox genes along
shortest Hamiltonian paths w.r.t. to genetic distance. Top: effect of the temperature parameter T for distances between Latimeria
menadoensis homeobox sequences. Below: Comparison of adjacencies for two different metrics (Hamming distance, and
BLOSSUM45 derived dissimilarities) in L. menadoensis (left) and S. purpuratus for T = 0.1 to emphasize the structure of the
ambiguities. Gene names are abbreviated 1-13 = HoxA1-HoxA13 for L. menadoensis and 1-8 = HoxA1-HoxA8, 9* = HoxA9/10, a-c
= HoxA11/13a-HoxA11/13c for S. purpuratus.

Hox genes are ancient regulators originating from a
single Hox gene in the metazoan ancestor. Over the
course of animal evolution the Hox cluster gradually
expanded to 14 genes in the vertebrate ancestor [28].
Timing and positioning of Hox gene expression along
the body axis of an embryo is co-linear with the ge-
nomic arrangement in most species. Only the 60 amino
acids of the so-called homeodomain can be reliably
compared at the extreme evolutionary distances in-
volved in the evolution of the Hox system. We quan-
titatively measure the genetic distance of the home-
odomain sequences either using the Hamming dis-
tance, i.e. the number of different amino-acids, or the
transformation dab = s(a, a) + s(b, b) − 2s(a, b) of the
BLOSSUM45 similarity scores.

We analyzed here the Hox A cluster of Latimeria
menadoensis (famous as a particularly slowly evolving
“living fossil”), which has sufferered the fewest gene
losses among vertebrates. The 11 HoxA genes are ar-
ranged in the same order and orientation reflecting
the gene order of the vertebrate ancestor: HoxA13,
HoxA11 to HoxA9 and HoxA7 to HoxA1. In con-
trast, the Hox cluster of the sea urchin Strongylo-
centrus purpuratus has undergone fairly recent rear-
rangements of its gene order [29]. The putative ances-
tral cluster most likely had three anterior, five mid-
dle and one to five posterior genes. The exact num-
ber is not known because the time point of the pos-
terior expansion is uncertain. The gene set of S. pur-
puratus is reminiscent of the ancestral configuration.

Höner zu Siederdissen et al. Page 11 of 12

However, it reveals a gene order wherein the anterior
genes (Hox1, Hox2 and Hox3) lie nearest to the pos-
terior genes (Hox11/13c, Hox11/13b, Hox11/13a and
Hox9/10), see Fig. 2. Several rearrangement schemes
have been proposed, a minimum of one translocation,
two gene inversions and the loss of Hox4 is required to
reach the current configuration. Fig. 2 shows the poste-
rior probabilities of adjacencies. Both, the coelacanth
and the sea urchin examples reflect the well-known
clustering into anterior (Hox1-3), middle group genes
(Hox4-8), and posterior ones (Hox9-13). The short-
est Hamiltonian paths in L. menadoensis connect the
Hox genes in their genomic order. The high endpoint
probability values p(hoxA1, T = 0.1) = 0.699 and
p(hoxA13, T = 0.1) = 0.960 correctly identify HoxA1
and HoxA13 as cluster endpoints. In the sea urchin,
however, we see adjacencies connecting the anterior
subcluster (Hox1-3) with the genomic end of the clus-
ter, i.e., the middle group genes (Hox8-Hox5). This is
indicative of the recent cluster rearrangement. With a
factor of about 2 the endpoint probability value favors
hoxA2 over hoxA1 (the true endpoint). Note also that
independent posterior expansion in Chordata (such as
L. menadoensis) and Ambulacraria (such S. purpura-
tus) has lead to paralogs with greater genetic distance
than observed among the anterior and middle group
genes.

5 Discussion
We have taken here the first step towards extending
algebraic dynamic programming (ADP) beyond the
realm of string-like data structures. Our focus is an effi-
cient, yet notationally friendly way to treat DP on un-
ordered sets. As a showcase application we used ADP
on sets to demonstrate that statistics over Hamiltonian
paths can be computed efficiently as means of analyz-
ing the ancient evolution of gene clusters. This exten-
sion of ADP builds on the same foundation (namely
ADPfusion [2]) as our grammar product formalism
[7, 30]. The key idea is to redefine the rules of parsing
to match the natural subdivisions of the data type that
now may be much more general than strings. In the
case of sets, these are bipartitions and the splitting of
individual elements, rather than the subdivision of an
interval or the removal of a boundary element that are
at the heart of string grammars. A particularly useful
feature of our work is the ADP-style implementation
and a principled approach to constructing outside algo-
rithms, which is a rather straightforward consequence
of defining the complement of a substructure relative
to the input data object. There are several advantages
to this approach:
• One cannot forget contributions to outside recur-

sions. Such missing rules render the algorithm in-
valid, sometimes in non-obvious ways. This is of

particular relevance for complex grammars and
when existing algorithms are to be modified.

• Together with the ADPfusion framework the most
annoying type of bugs in practical implementa-
tions of DP, namely index errors, can be avoided
altogether because all index arithmetic is implicit
and hidden completely from the user.

• Outside grammar construction is independent of
syntactic variable and terminal types. As long as
the abstract grammar is a context-free grammar,
an outside version can be constructed.

• Our mechanistic construction interacts smoothly
with other systems that automate creation of for-
mal grammars, e.g. grammar products [7].

Our current framework still lacks generality and
completeness in several respects. It is evident from our
example above that data objects of different types can
be obtained in the decomposition. For these, parsing
may then mean different, type-dependent things. For
instance, in the context of forest alignment and for-
est editing, reviewed in [31], it may be useful to dis-
tinguish trees from general forests. This suggests the
possibility to develop an algebraic formalism of pars-
ing/decomposition for complex data objects and thus
an even higher-level way of specifying the intricacies of
parsing schemes underlying DP algorithms. McBride’s
notion of a derivative operator acting on data types
[32] appears to be a relevant starting point in this di-
rection, although it does not seem to be directly ap-
plicable.

Although our present framework requires that pars-
ing methods have to be specified for novel data types
such as the punctuated sets of Section 2.4, this has to
be done only once and can reused without additional
overhead for all DP scenarios on the same data types.
In particular, our system already handles all CFGs
(and thereby also all linear grammars) on either strings
or (punctuated) sets and automatically provides the
associated outside algorithms. The high-level frame-
work described here does not require much of a com-
promise in terms of computational efficiency. While we
have to accept a decrease in theoretical performance
by a moderate constant factor the gains in ease of algo-
rithm design and actual software development are well
worth this price. In the ADPfusion framework we cur-
rently have to accomodate approximately a doubling
of the running time compared to expert-optimized im-
plementations. Conceptually, the framework extends
to multi-context-free grammars (MCFGs) and thus
holds promise to drastically simplify the implementa-
tion of algorithms for RNA folding with pseudoknots
and complex RNA-RNA interaction structures. Ongo-
ing work in this area aims at formalizing MCFG-ADP
theory [33] and the efficient implementation of the nec-
essary parsers in ADPfusion [34].

Höner zu Siederdissen et al. Page 12 of 12

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

All three authors conceived the study and wrote the manuscript. CHzS

implemented the ADP framework, SJP designed and analyzed the gene

duplication case study. This work is a revised and extended version of a

manuscript presented at the Brazilian Symposion on Bioinformatics in Belo

Horizonte, Oct 2014 [35].

Availability

The algorithms described in this work are part of the generalized ADP

framework. Available here:

http://www.bioinf.uni-leipzig.de/Software/gADP/

Acknowledgements

This work was funded, in part, by the Austrian FWF, project “SFB F43

RNA regulation of the transcriptome”, the Templeton Foundation, grant

24332 “Origins and Evolution of Regulation in Biological Systems”, and

the DFG project “MI439/14-1”.

Author details
1Bioinformatics Group, Department of Computer Science, Universität

Leipzig, Härtelstraße 16–18, D-04107 Leipzig, Germany. 2Department of

Theoretical Chemistry, University of Vienna Währinger Straße 17, A-1090

Vienna, Austria. 3Computational EvoDevo Group, Department of

Computer Science, Universität Leipzig, Härtelstraße 16–18, D-04107

Leipzig, Germany. 4Interdisciplinary Center for Bioinformatics, Universität

Leipzig, Härtelstraße 16–18, D-04107 Leipzig, Germany. 5 Max Planck

Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig,

Germany. 6 Fraunhofer Institut for Cell Therapy and Immunology,

Perlickstraße 1, D-04103 Leipzig, Germany. 7 Center for non-coding RNA

in Technology and Health, Grøneg̊ardsvej 3, DK-1870 Frederiksberg C,

Denmark. 8 Santa Fe Institute, 1399 Hyde Park Rd., NM87501 Santa Fe,

USA.

References
1. Giegerich, R., Meyer, C.: Algebraic dynamic programming. In:

Kirchner, H., Ringeissen, C. (eds.) Algebraic Methodology And

Software Technology. Lect. Notes Comp. Sci., vol. 2422, pp. 349–364.

Springer, Berlin, Heidelberg (2002)

2. Höner zu Siederdissen, C.: Sneaking around concatMap: efficient

combinators for dynamic programming. In: Proceedings of the 17th

ACM SIGPLAN International Conference on Functional Programming

(ICFP’12), pp. 215–226. ACM, New York (2012)

3. Sauthoff, G., Janssen, S., Giegerich, R.: Bellman’s GAP – a declarative

language for dynamic programming. In: Proceedings of the 13th

International ACM SIGPLAN Symposium on Principles and Practices

of Declarative Programming (PPDP’11), pp. 29–40. ACM, New York

(2011)

4. Giegerich, R., Touzet, H.: Modeling dynamic programming problems

over sequences and trees with inverse coupled rewrite systems.

Algorithms, 62–144 (2014)

5. Höner zu Siederdissen, C., Hofacker, I.L.: Discriminatory power of

RNA family models. Bioinformatics 26, 453–459 (2010)

6. Voß, B., Giegerich, R., Rehmsmeier, M.: Complete probabilistic

analysis of RNA shapes. BMC Biology 4, 5 (2006)

7. Höner zu Siederdissen, C., Hofacker, I.L., Stadler, P.F.: Product

grammars for alignment and folding. IEEE/ACM Trans. Comp. Biol.

Bioinf. 99 (2014)

8. Rabiner, L.R.: A tutorial on hidden markov models and selected

applications in speech recognition. Proc. IEEE 77, 257–286 (1989)

9. Baker, J.K.: Trainable grammars for speech recognition. J. Acoust.

Soc. Am. 65, 132 (1979)

10. Huang, F.W.D., Qin, J., Reidys, C.M., Stadler, P.F.: Partition function

and base pairing probabilities for RNA-RNA interaction prediction.

Bioinformatics 25, 2646–2654 (2009)

11. Huang, F.W.D., Qin, J., Reidys, C.M., Stadler, P.F.: Target prediction

and a statistical sampling algorithm for RNA-RNA interaction.

Bioinformatics 26, 175–181 (2010)

12. Reidys, C.M., Huang, F.W.D., Andersen, J.E., Penner, R.C., Stadler,

P.F., Nebel, M.E.: Topology and prediction of RNA pseudoknots.

Bioinformatics 27, 1076–1085 (2011). Addendum in: Bioinformatics

28:300 (2012)

13. Janssen, S.: Kisses, ambivalent models and more: Contributions to the

analysis of RNA secondary structure. PhD thesis, Univ. Bielefeld

(2014). urn: nbn:de:hbz:361-26821318

14. Bellman, R.: Dynamic programming treatment of the travelling

salesman problem. J. ACM 9, 61–63 (1962)

15. Held, M., Karp, R.M.: A dynamic programming approach to

sequencing problems. J. SIAM 10, 196–201 (1962)

16. Durbin, R., Eddy, S.R., Krogh, A., G., M.: Biological Sequence

Analysis. Cambridge University Press, Cambridge (1998)

17. Needleman, S.B., Wunsch, C.D.: A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J.

Mol. Biol. 48, 443–453 (1970)

18. Gotoh, O.: Alignment of three biological sequences with an efficient

traceback procedure. J. theor. Biol. 121, 327–337 (1986)

19. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H.,

Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Alg.

Mol. Biol. 6, 26 (2011)

20. Wuchty, S., Fontana, W., Hofacker, I.L., Schuster, P.: Complete

suboptimal folding of RNA and the stability of secondary structures.

Biopolymers 49(2), 145–165 (1999)

21. McCaskill, J.S.: The equilibrium partition function and base pair

binding probabilities for RNA secondary structure. Biopolymers 29,

1105–1119 (1990)

22. Dowell, R.D., Eddy, S.R.: Evaluation of several lightweight stochastic

context-free grammars for RNA secondary structure prediction. BMC

Bioinformatics 5, 71 (2004)

23. Höner zu Siederdissen, C., Berhart, S.H., Stadler, P.F., Hofacker, I.L.:

A folding algorithm for extended RNA secondary structures.

Bioinformatics 27, 129–137 (2011)

24. Höner zu Siederdissen, C., Hammer, S., Abfalter, I., Hofacker, I.L.,

Flamm, C., Stadler, P.F.: Computational design of RNAs with complex

energy landscapes. Biopolymers 99, 1124–1136 (2013)

25. Elemento, O., Gascuel, O.: An efficient and accurate distance based

algorithm to reconstruct tandem duplication trees. Bioinformatics 8
Suppl. 2, 92–99 (2002)

26. Robinson, W.S.: A method for chronologically ordering archaeological

deposits. Amer. Antiquity 16, 293–301 (1951)

27. Prohaska, S.J., Höner zu Siederdissen, C., Stadler, P.F.: Expansion of

gene clusters and the shortest Hamiltonian path problem, 2015

28. Garcia-Fernàndez, J.: Hox, parahox, protohox: facts and guesses.

Heredity 94, 145–152 (2005)

29. Cameron, R.A., Rowen, L., Nesbitt, R., Bloom, S., Rast, J.P., Berney,

K., Arenas-Mena, C., Martinez, P., Lucas, S., Richardson, P.M.,

Davidson, E.H., Peterson, K.J., Hood, L.: Unusual gene order and

organization of the sea urchin Hox cluster. J Exp Zoolog B Mol Dev

Evol 306, 45–58 (2006)

30. Höner zu Siederdissen, C., Hofacker, I.L., Stadler, P.F.: How to

multiply Dynamic Programming algorithms. In: Brazilian Symposium

on Bioinformatics (BSB 2013). Lect. Notes Bioinf., vol. 8213, pp.

82–93. Springer, Heidelberg (2013)

31. Billie, P.: A survey on tree edit distance and related problems. Theor.

Comp. Sci. 337, 217–239 (2005)

32. McBride, C.: Clowns to the left of me, jokers to the right (pearl):

dissecting data structures 43, 287–295 (2008)

33. Riechert, M.: Algebraic Dynamic Programming for Multiple

Context-Free Languages

34. Riechert, M., Höner zu Siederdissen, C., Stadler, P.F., Waldmann, J.:

Algebraic dynamic programming for multiple context-free languages. in

preparation (2015)

35. Höner zu Siederdissen, C., Prohaska, S.J., Stadler, P.F.: Dynamic

programming for set data types. In: Campos, S. (ed.) Advances in

Bioinformatics and Computational Biology: BSB 2014. Lect. Notes

Comp. Sci., vol. 8826, pp. 57–64 (2014)

