Comparative ncRNA Detection in Archaea

Christian Höner zu Siederdissen¹, Sarah Berkemer², Fabian Amman^{2,3}, Axel Wintsche^{3,4}, Sebastian Will^{2,3}, Sonja J. Prohaska^{3,4}, and Peter F. Stadler^{1,2,3,5,6,7,8}

 1 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.

² Bioinformatics Group, Department of Computer Science

University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.

³ Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.

⁴ Computational EvoDevo Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.

⁵ Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.

⁶ Fraunhofer Institut f
ür Zelltherapie und Immunologie, Perlickstraße 1, D-04103 Leipzig, Germany.

⁷ Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.

⁸ Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501.
 E-mail:studla@bioinf.uni-leipzig.de

Supplementary Figure 1. For the top 2500 hits in each of the cm searches with our BHB model, the corresponding region (± 250 nt) were searched for fitting to the description of a ncRNA from Rfam database [1]. The plot shows a histogram with bin size 100 for how many cm search are locally associated with a ncRNA, e.g. for *M. kandleri* top 100 ranked search hits, 7 are associated with tRNA, 1 with other (in this case a flpD motif), and two correspond to 5_8S_rRNA. The best hits are indeed enriched in association with ncRNA, whereas tRNA are predominant.

Supplementary Figure 2. Novel putative circRNA from *M. kandleri* (at 1500955-1501112). Alignment and consensus RNA secondary structure with homolog sequences in other archaea; the homologs were identified by blast search at e-value cut-off 0.01 as described in the main text. The figure furthermore reports the genome accession codes of the homolog sequences. The consensus structure and the output figure were generated using RNAalifold [2].

Species	tRNAscan				cm Search		
	tRNA Type Intron Begin Intron End				Rank Bit Score		
Methanopyrus kandleri	Trp	55,108	55,183	5.	21.5		
Methanopyrus kandleri	Pro	$1,\!499,\!308$	$1,\!499,\!322$	124.	14.7		
Methanopyrus kandleri	Pseudo	$1,\!659,\!640$	$1,\!659,\!691$	2.	25.3		
Methanopyrus kandleri	Phe	$1,\!639,\!150$	$1,\!639,\!119$	not	found		
Methanopyrus kandleri	Cys	1,062,337	1,062,317	79.	15.4		
Methanopyrus kandleri	Asn	881,764	881,738	3.	25.2		
Methanopyrus kandleri	Met	382,127	382,092	4.	22.2		
Sulfolobus solfataricus	Asn	49,381	49,394	23.	12.5		
Sulfolobus solfataricus	Met	466,263	466,279	209.	9.1		
Sulfolobus solfataricus	Leu	$637,\!204$	637,218	not	found		
Sulfolobus solfataricus	Leu	$837,\!058$	837,073	146.	10.0		
Sulfolobus solfataricus	Ile	913,737	913,726	19.	12.6		
Sulfolobus solfataricus	Pro	$898,\!333$	898,313	242.	8.9		
Sulfolobus solfataricus	Thr	789,727	789,713	172.	9.4		
Sulfolobus solfataricus	Tyr	$642,\!512$	642,500	not	found		
Sulfolobus solfataricus	Ser	641,001	640,978	801.	6.7		
Sulfolobus solfataricus	Arg	$290,\!939$	290,927	566.	7.3		
Sulfolobus solfataricus	Arg	249,046	249,032	219.	9.0		
Sulfolobus solfataricus	Thr	$206,\!385$	206,373	156.	9.7		
Sulfolobus solfataricus	Met	184,841	184,817	13.	13.3		
Sulfolobus solfataricus	Lys	138,407	$138,\!386$	1420.	5.7		
Sulfolobus solfataricus	Lys	$122,\!617$	$122,\!595$	2.	17.3		
Sulfolobus solfataricus	Trp	$72,\!831$	72,767	1321.	5.9		
Sulfolobus acidocaldarius	Ser	512,669	512,693	62.	9.6		
Sulfolobus acidocaldarius	Leu	$512,\!819$	$512,\!833$	5.	14.4		
Sulfolobus acidocaldarius	Met	$515,\!240$	$515,\!257$	140.	8.3		
Sulfolobus acidocaldarius	Lys	608,795	608,816	1.	16.7		
Sulfolobus acidocaldarius	Pro	$1,\!096,\!684$	1,096,704	145.	8.3		
Sulfolobus acidocaldarius	Met	1,166,860	1,166,879	10.	13.4		
Sulfolobus acidocaldarius	Asn	$2,\!181,\!266$	$2,\!181,\!254$	129.	8.5		
Sulfolobus acidocaldarius	Gly	2,160,121	2,160,107	988.	5.5		
Sulfolobus acidocaldarius	Arg	$1,\!241,\!011$	$1,\!240,\!995$	4.	14.8		
Sulfolobus acidocaldarius	Thr	$1,\!188,\!440$	$1,\!188,\!425$	73.	9.4		
Sulfolobus acidocaldarius	Leu	$716{,}510$	$716,\!493$	12.	13.0		
Sulfolobus acidocaldarius	Cys	$610,\!584$	$610,\!569$	not	found		
Sulfolobus acidocaldarius	Lys	$607,\!184$	607, 157	11.	13.0		
Sulfolobus acidocaldarius	Thr	$563,\!576$	$563,\!550$	8.	13.9		
Sulfolobus acidocaldarius	Phe	$458,\!889$	$458,\!872$	not	found		
Sulfolobus acidocaldarius	Gly	$458,\!680$	$458,\!666$	not	found		
Sulfolobus acidocaldarius	Arg	138,765	138,749	9.	13.7		
$Sulfolobus \ acidocal darius$	Trp	49,256	49,197	21.	11.4		

Supplementary Table 1. Comparison between tRNA introns accoring to tRNAscan results for *Methanopyrus kandleri*, *Sulfolobus solfataricus*, and *Sulfolobus acidocaldarius* and cm search results.

Supplementary Table 2. Comparison between circularized RNA according to RNAseq read analysis and predicted BHB elements for *Methanopyrus kandleri*. The first two columns give the genomic position of the left and right circularizing bases. "Read Count" gives the number of reads supporting this particular circularization event. For each locus, which was reported to be associated with an BHB element, the Rank in the genomic screen and its bit score is provided. The last column describes the genomic neighborhood. If it is within an annotated gene, its locus tag is given. For loci in intergenic regions the distance to the upstream and downstream gene is given.

F	RNA-seq		cm	Sea	rch	Genomic Surrounding
L. junc.	R. junc.	#Count	Rank	Bi	t Score	ncbi locus tag
69,921	69,985	2,065		-		$MK0074 \Leftarrow 25nt 77nt \Rightarrow MK0075$
91,822	91,904	2,992	7,845.		8.1	\Leftarrow MK0099 \Rightarrow
$205,\!318$	$205,\!387$	12,182		—		$\mathrm{MK0213} \Leftarrow \mathrm{21nt} \ \mathrm{102nt} \Rightarrow \mathrm{MK0214}$
219,317	219,379	2,412		_		\Leftarrow MK0233 \Rightarrow
$271,\!148$	271,216	10,072	3,546.		9.8	\Leftarrow MK0280 \Rightarrow
361,063	361,125	1,809		_		$\Leftarrow \mathrm{MK0371} \Rightarrow$
384,798	$384,\!945$	634		_		$\mathrm{MK0403} \Leftarrow 665 \mathrm{nt} \ 201 \mathrm{nt} \Rightarrow \mathrm{MK0404}$
459,461	$459,\!532$	9,830	9,039.		7.7	\Leftarrow MK0498 \Rightarrow
$519,\!288$	519,358	$22,\!145$	15,966.		6.1	$\Leftarrow MK0556 \Rightarrow$
520,778	$520,\!845$	$13,\!484$		_		$MK0557 \Leftarrow 6nt 269nt \Rightarrow MK0558$
755,163	$755,\!226$	304		_		\Leftarrow MK0794 \Rightarrow
790,521	790,585	1,161	19,971.		5.2	$\mathrm{MK0830} \Leftarrow \mathrm{6nt} \ \mathrm{142nt} \Rightarrow \mathrm{MK0831}$
$993,\!172$	993,238	50,802		—		\Leftarrow MK1033 \Rightarrow
1,104,263	1,104,330	6,223	17,300.		5.7	$MK1128 \Leftarrow 573nt \ 260nt \Rightarrow MK1129$
1,238,104	1,238,178	9	4,630.		9.2	$\Leftarrow \mathrm{MK1253} \Rightarrow$
1,417,298	1,417,370	$9,\!371$		_		$\mathrm{MK1390} \Leftarrow 36\mathrm{nt}\ 224\mathrm{nt} \Rightarrow \mathrm{MK1391}$
1,417,378	1,417,443	$5,\!658$	14,942.		6.3	$MK1390 \Leftarrow 116nt 144nt \Rightarrow MK1391$
1,444,847	1,444,927	2		—		$\Leftarrow MK1415 \Rightarrow$
1,500,955	1,501,112	$2,\!648$		_		$\mathrm{MK1479} \Leftarrow 88\mathrm{nt}\ 205\mathrm{nt} \Rightarrow \mathrm{MK1480}$
1,506,611	1,506,673	$8,\!396$	6,984.		8.4	$\Leftarrow \text{MK1486} \Rightarrow$

Supplementary Table 3. Circulare RNA in *Sulfolobus solfataricus* [3] are tested for recovery in the cm screen using the consensus model in glocal mode. Additionally, the analysis was redone using the homology loci, if available, in *Sulfolobus acidocaldarius*. The homology search eas conducted with the GotohScan program [4]. The "Start" and "End" columns refer to position in the genomes NC_002754 and NC_007181, respectively.

	Sulfolobus solfataricus			Sulfolobus acidocaldarius				
	RNA	-seq	cm	Search	RNA	A-seq	cm	Search
Name	Start	End	Rank	Bit Score	Start	End	Rank	Bit Score
5S rRNA/SSOr02	77,945	78,067	863.	6.5	1,293,914	$1,\!294,\!035$		_
16S rRNA/SSOr03	$871,\!658$	873,216		_	1,108,641	1,107,094		_
23S rRNA/SSOr04	873,334	876,429		_	1,106,947	$1,\!103,\!875$		_
tRNA-Trp/SSOt04	72,767	72,831	1,321.	5.9	49,197	49,262	548.	6.4
tRNA-Lys/SSOt07	138,386	138,407	$1,\!420.$	5.7	607,138	607,204	11.	13.0
tRNA-Met/SSOt11	184,817	184,841	13.	13.3	-	_		_
tRNA-Pro/SSOt42	898,313	898,333	242.	8.9	1,096,702	1,096,684	145.	8.3
tRNA-Ser/SSOt33	640,978	641,001	1,094.	6.2	512,691	$512,\!669$	62.	9.6
C/D box sR106	285,707	285,760		_	2,179,509	$2,\!179,\!560$		_
C/D box Sso-180	362,308	362, 369		-	669,556	669,612		-
C/D box sR133	442,392	442,417		-	-	-		_
C/D box sR102	563,241	563,296		-	1,388,934	1,388,984		-
C/D box Sso-sR8	647,783	647,833	601.	7.1	1,885,917	1,885,967		-
C/D box Sso-sR4	666, 143	666, 186	1,779.	5.3	-	-		_
C/D box Sso-sR10	$794,\!186$	794,240		-	1,152,443	1,152,394		-
C/D box Sso-207	816,021	816,075		-	-	_		_
C/D box SSOs02	829,352	829,405		-	1,117,732	1,117,685		-
C/D box Sso-sR12	2,189,397	2,189,456		-	-	-		_
C/D box sR105	2,237,915	2,237,962		-	217,040	217,087		_
H/ACA box sR109	59,5510	595,579	308.	8.3	458,983	459,052	351.	7.0
ncRNA	442,786	442,854		-	-	-		_
ncRNA	722,538	722,578	3005.	4.4	417,691	417729		-
Sso-117	1,576,633	1,576,671		-	-	-		_
Sso-109	1,927,228	1,927,258		-	-	-		_
7S rRNA/SSOr01	49,977	50023	839.	6.6	72,370	72,326	763.	5.9
Sso-214	$105,\!148$	105, 181		_	-	_		_
RNase P	224,732	224,765		-	586,242	586,211		-
Sso-83	581,818	581,860		-	-	-		_
ncRNA	1,275,500	$127,\!5567$		_	-	_		_
SSO0393	$343,\!138$	343,264		_	650,082	650,206		_
Intergenic region	871,573	871657	1,107.	6.2	1,108,730	1,108,647		-
Intergenic region	873,215	873331		_	1,107,091	$1,\!106,\!972$		_
SSO0389	335,563	$335,\!635$		_	-	_		_
SSO0845	725,923	726,085		_	-	—		—
SSO2359	$2,\!154,\!297$	$2,\!154,\!322$		-	782,915	$782,\!892$		-
SSO2619	2,385,872	2,385,901		_	738,654	$738,\!681$		_
SSO2642	2,404,146	2,404,146		_	2,114,638	2,114,694		_

Supplementary Table 4. circRNA candidates of *M. kandleri* and *S. acidolarius* with putatively conserved stable secondary structures as predicted by RNAz. As described in the main text, circRNA candidates were identified by mapping RNA-Seq data, homologs were located in all archaeal genomes, potential homologs were aligned, and subsequently evaluated by RNAz. The table lists the candidates that are predicted as putative structural RNAs together with the number of homologous sequences in the locus alignment and the assigned RNAz class probability.

circRNA candidate locus	Number of	RNAz class
Accession Start Stop	Seqs	probability
NC_003551.1 1500955 1501112	10	0.9992
NC_007181.1 1214595 1214683	4	0.680306
NC_007181.1 1254692 1254799	4	0.938321
NC_007181.1 1107137 1107281	39	0.998730
NC_007181.1 1803656 1803770	3	0.722219
NC_007181.1 183648 183733	5	0.703805
NC_007181.1 1995955 1996059	3	0.619096
NC_007181.1 553923 554080	4	0.799874
NC_007181.1 753148 753230	4	0.982281
NC_007181.1 766362 766509	4	0.646306
NC_007181.1 773268 773364	4	0.644060
NC_007181.1 86425 86509	3	0.554138

8 Höner zu Siederdissen et al.

References

- Gardner, P.P., Daub, J., Tate, J., Moore, B.L., Osuch, I.H., Griffiths-Jones, S., Finn, R.D., Nawrocki, E.P., Kolbe, D.L., Eddy, S.R., et al.: Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Research **39**(suppl 1) (2011) D141–D145
- Bernhart, S.H., Hofacker, I.L., Will, S., Gruber, A.R., Stadler, P.F.: RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9 (2008) 474
- 3. Danan, M., Schwartz, S., Edelheit, S., Sorek, R.: Transcriptome-wide discovery of circular RNAs in archaea. Nucleic Acids Res. 40 (2012) 3131–3142
- Hertel, J., de Jong, D., Marz, M., Rose, D., Tafer, H., Tanzer, A., Schierwater, B., Stadler, P.F.: Non-coding RNA annotation of the genome of *Trichoplax adhaerens*. Nucleic acids research **37**(5) (2009) 1602–1615